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Introduction 

“If I could remember the names of all these particles, I’d be a Botanist.” 

Enrico Fermi 

In the present era, we are witnesses to the triumph of the Standard Model. However, 
that model in itself (i.e., confinement) implies that asymptotic states are composites. That 
being true, the situation is analagous to living in a world of chemical compounds, inferring 
that atoms exist, but being unable to break the chemical bond. In such a world, a working 
knowledge of chemistry is unavoidable. Similarly, a nodding acquaintance with hadrons 
is still essential to particle physicists, even though we “know” that they are composed of 
quarks. The goal of this set of lectures is to make the masses and decays of the hadron “zoo” 
explicable using back of the envelope (ABACUS) es imates. The “inspirations” of quantum t’ 
chromodynamics (QCD) are used wherever possible. 

An idiosyncratic list of references is given. Clearly, it is not meant as a complete bibli- 
ography. Figures and tables are freely taken from these references. As regards units, tL = c 
= 1 is used, but knowing that fLc = 0.2 GeV . fm = 2 x lo-” GeV . cm = g x 10-r’ GeV . 
set one can convert any expression to more physical units. Finally in discussing composites, 
M will refer to composite mass while m refers to the constituent mass. 

This note is meant to be a companion piece to FN-423, “FNAL Collider Physics on an 
Abacus.” The same simple minded handwaving approach adopted herein was used in that 
note but addressing topics in Collider physics. In the same sense that the Lund Monte 
Carlo contains all of Collider physics, lattice engines can calculate all hadronic properties. 
Unfortunately, little physical insight follows in the wake of these tools. 

The masses, quantum numbers, interactions, and decay modes of the “zoo” are tabulated(‘) 
in the “Blue Book” which is carried by most practicing particle physicists. At the end of 
these lectures, few mysteries (albeit that topics are sketched in broad but shallow brush 
strokes) should remain. The outline is as follows; Section I is on Hadron Masses while Sec- 
tion II concerns itself with interactions and decays. Have a good day trip to the Hadron 
zoo. 

The aid of T. Gourlay and P. Hatcher is gratefully acknowledged. Their patience and 
good humor is also much appreciated. 



Section I. 
Hadron Masses 

A. Hadron Non-Relativistic Binding 

The constituents of the Standard Model are shown in Fig. A.l. They consist of three 
quark doublets and three generations of lepton doublets. The gauge bosons consist of the 
photon and the charged and neutral weak force carriers, the 2” and W bosons. If this were 
the whole story, life would be much simpler. However, we know that isolated quarks do not 
exist and therefore we must face up to the problem of hadrons whose constituents are the 
quarks themselves. 

STANDARD MODEL CONSTITUENTS 

QUARKS 

LEPTONS 

[yd] [:I [b] Q=[-:::I 
[;] [;I [J Q=[b I 

GAUGE 
BOSONS 

Y,Z 
w+,w- 

Fig. A.1: Constituents in the Standard Model. 
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To that end, let us first look at the hydrogen atom which is one of the few solveable prob- 
lems in physics and something which we have a lot of experience with from undergraduate 
quantum mechanics. In the hydrogen atom there are only two scales of interest. There is 
the Yukawa wavelength ;t , that is the mass scale, and there is another scale set by the di- 
mensionless coupling constant which for the case of electromagnetism is usually called alpha. 
For a system acting under a power law potential the virial theorem is given in the equation 
below: 

V(T) = A/rN 

(A.11 

This relates the mean value of the kinetic energy and the mean value of the potential 
energy. Looking at Fig. A.Z.a, it is easy to see that the amplitude involved in one pho- 
ton exchange is proportional to n so it is not at all surprising that the binding energy is 
proportional to the square of that amplitude or aa. 

9 9 
I I 
A A 
9 9 

A-g2 

Fig, A.2.a: One photon exchange diagram for the hydrogen atom. 



Fig. A.2.b: Standing wave stability condition for a eke Broglie matter wave. 

Fig. A.2.c: Spin-orbit vector diagram for moment alignment to B’ field. 

The quantization condition for the CdeBroglie wavelength is shown pictorially in Fig. A.2.b 
and its given in equation form below: 

Ad = 2n/p, 3 G l/m 

n& = 2at (A.21 

L=n 

The condition can be understood as saying that a stable solution requires a standing wave 
which means that there are an integral number of dekoglie wavelengths around the orbit of 
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the hydrogen atom. This leads to the familiar quantization of orbital angular momentum. 
That being the case, we can derive an expression for the Bohr radius which is given in Eq. 
A.3 below: 

T = -V/2 

Pa 
2m 

= g=/2r, L = vp = n 

73 
- = g=/2r, Q E g= 
2mtz (A.31 

T = a = 72 ya, a. = x/a 

E = T+V = T/J’ 

= v/2 = F (a2/n2) E M 

We obtain the quantized energy levels as in the standard Bohr theory. Notice that the 
characteristic size of this bound system is the Yukawa mass scale of the constituents divided 
by the strength of the binding, a. This means that weakly bound systems are large. Note 
also that the scale of the binding energy is the mass scale times a2. The velocity with respect 
to that of light or p is equal to a; this means we are indeed dealing with a nonrelativistic 
situation if the binding is weak. 

So much for the basic binding mechanism, now let’s look at some of the finer structure. 
We know that the electron has a spin so it possesses a magnetic moment. The basic electric 
binding, because of relativity, has implicit a magnetic field in the restframe of the electron 
due to the proton or nucleus current circulating about the electron. This is illustrated in Fig. 
A.2, and the energy associated with the alignment of the electron-spin magnetic moment to 
this magnetic field is shown in Eq. A.4: 
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M,, = -i;.j 
B’zz px2-i 
E = (V/gay 

Wo = ( > ; s’WIw1 
jq - 1 

(A.4) 

kd -N 
M ( ,[ s 5 

m 1 = v =pa 
a 

The resultant spin-orbit splitting with respect to the main binding is proportional to pa. 
Therefore, in a weak binding case where the velocities are low this is a perturbative correction 
to the main-binding effect and is generally known as spin-orbit splitting. Another small 
splitting effect is the spin-spin splitting due to the alignment of the electron-magnetic moment 
with the nuclear-magnetic moment. For heavy nuclei this is a small effect relative to the 
spin-spin splitting because the nuclear-magnetic moment relative to the electron-magnetic 
moment is down by the relative mass ratio. 

What about angular momentum effects ? So far we have been talking about S waves. 
The effect of angular momentum can be formulated as being due to a centrifugal potential 
and is shown in Eq. A.5 below: 

f = mv21t = L’/(nd) 

V, - [La/(2mr”)] . 

L’ = qe + l), L, = p 

(A.5) 

The centrifugal force is derivable from the potential. In this case, we used the full quantiza- 
tion condition on the square of the angular momentum. The complete S&&linger equation 
then states that the radial-kinetic energy plus the potential energy plus the centrifugal po- 
tential is equal to the total energy. Using the spherical harmonic wave function separation, 
the radial ScAt&linger equation is as shown in Eq. A.6: 
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g+v+l: 1 = E, $ G (+)E;= 

d’ldr2 -- 
2m 

+ e(e+l) 
2mr2 

+ V(T) u = Eu 1 
E=E,Jn=,E. = Fcx’ = M 

Without actually solving this equation one can study the properties of the solution at large 
and at small values of the radius. At large values of the radius the kinetic term dominates 
because the potential falls off. In that case, the solution is exponential in radius. Conversely, 
at smsll values of the radius, what is important is the kinetic term and the centrifugal 
potential since it goes like one over r2 while the potential for Coulomb binding only goes as 
one over r. In that case, a power law for the wave function is easily seen to be a solution. 
Putting both of these together one can write down the SchF&inger solution as the product 
of those two times some unspecified polynomial. In fact, this is the correct solution as is 
known from undergraduate quantum mechanics: 

-1 d% 
T’cc : -- 

2m dra 
= (E@)u 

T-+0 : 
d% + qe + 1) 

-- 
d+ T= 1 T&=0 (A-7) 

: * - Tfe-r/Mo [h"'] E;P 

So what happens is that at large values of the radius the wave function falls off. That 
means we are bound and contained somewhere near the origin. The rf factor means that the 
centrifugal potential pushes out the wave function and that causes the T' behavior of the wave 
function near the origin. An important special case occurs for the lowest principle quantum 
number, S wave or 1 = 0 wave function which is a simple exponential. The normalization 
condition means that the wave function squared (the probability density) integrated over all 
space is equal to 1. That defines the coefficient in front as shown below: 

+;z=,” = 
J 

L e-‘/“” 
ira; 

lwll’ = 2 0 
= a3/ir;t = 

(A4 
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Notice that the probability density at the origin goes like the inverse cubed power of the 
Bohr radius. This means that more weakly bound systems are less dense at the origin as 
one might expect. One should also note that the wave function vanishes at the origin except 
for S waves. 

Finally, let’s go back and look at the spin-spin interaction. In this case, we will be 
following a derivation which was originally made by Fermi. Suppose you have a uniform 
surface charge density which is rotating with some angular frequency. This surface charge 
density can be broken up into a series of infinitesimal current loops. We know that current 
loops cause a dipole magnetic field and we can sum all the current loops over the surface of 
the rotating sphere. When we do that we find we have a dipole field outside and a uniform 
field inside. The interaction of that field with a point particle of magnetic moment density 
@r results in an interaction energy as given below: 

&I = g/G, V = volume of 1 

M,, = -/T.g = - 
J 

B;.$& 

I 
8~ . = - 3vp~ . h&d; 

N 

(A.91 

Since we are dealing with S states the interaction energy with the dipole is only inside and 
we can approximate particles 2’s magnetic moment density with its value at the origin. That 
value is given below: 

iii,(O) = z 2, lvh(0)12 

/G - zL&=el,l . 
2ml 

M 
2 

12 = 3 E Ih(O)I ’ 22 
( > 

= $(A . A) l?h2(o)12 

(A.10) 

The resultant spin-spin interaction energy is proportional to the wave function of the 
composite system at the origin. Note, this result is only good for S states. To get an order 
of magnitude estimate of the value of the spin-spin interaction energy we use our .previous 
estimate for the wave function at the origin. Remember that the probability density has 
dimensions one over length cubed: 
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l-da. - ($) ($) 

- 5 (a3m3) = a4m . (A.11) 

The spin-spin interaction energy is equal dimensionally to the mass times a’, and that’s 
or times the characteristic binding energy. If you recall the result for spin-orbit splitting, 
when the constituents are all of equal mass the spin-spin splitting is as important as the 
spin-orbit splitting. That is not the case for the hydrogen atom but it is certainly the case 
for positronium and for the composite quark anti-quark and three quark systems that we 
will be looking at later. 
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B. Current and Constituent Quarks 

The evidence for the existence of quarks has been outlined in many books and it can be 

found in the references. For example, in electron-positron scattering one first found evidence 
of the existence of point-like partons in the proton. Somewhat later the power law behavior 
of the transverse-momentum spectrum of secondaries seen in high-energy hadron colliders 
was used as evidence for the observation of Rutherford-like scattering of partons within the 
hadrons. The necessity of binding quark systems together implies the existence of some 
vector boson analogous to the photon. In addition, the momentum sum rule which must be 
satisfied by the partons in electron-proton deep-inelastic scattering tells you that the total 
momentum carried by the quarks in the proton is only about half of all of the momentum. 
That is additional evidence for the existence of this vector gluon. Finally, the comparison 
between electron-proton and neutrino-proton scattering validates the charge assignments 
given to the quarks. For reasons which will become more clear later, quarks are assumed to 
come in three colors. Color is the strong force “charge.” There are then nine possible color 

anti-color gluon combinations. However, color confinement means there are no free gluons 
and so the color singlet which would not be confined is not allowed. This means that in the 
Standard Model there is an octet of colored gluons. 

Fig. B.l: Quark&on and triple gluon couplings. 
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Looking at Fig. B.l, this means that gluons are “charged.” They themselves are colored 
and so that leads to a natural question. Do gluons bind to one another, i.e., do glueballs 
exist? There is no particular reason why with non-Abel&r couplings that glueballs should 
not exist. There is a whole cottage industry of lattice calculations which indeed predict the 
lowest lying glueball states. Since gluon couplings are not radically different from quark 
couplings, you expect that the lightest glueball will be on the same mass scale as the typical 
meson or about 1 GeV. The quantum numbers are predicted also. However, there is no 
convincing evidence yet for glueball candidates and we will speak no more on this topic. 

To begin looking at quark anti-quark systems let’s recall some of the results from positro- 
mum which is the bound state of an electron and a positron under electromagnetic interac- 
tions. The charge conjugation quantum number of such a state is (-l)‘+’ while the parity 
is (-l)@’ The two spins couple together to a spin zero or spin one. For S states, the parity 
is negative and the charge conjugation is either minus one for spin zero or plus one for spin 
one. Since the charge conjugation quantum number for a system of n photons is (-l)“, 
the singlet positronium can only decay to three photons while the triplet can decay to two 
photons. The lowest order Feynman diagram for these decays is shown in Fig. B.2. 

e+ ----- - 

I 
A- (3 

Tf 
e- ---- 

“+-~I--i--I q$ 
e--&----- 

Fig. B.2: Diagram for otho and para positromum annihilation. 

Clearly the singlet decay width is down by a factor of a just from coupling constant 
arguments. Exact formulae are given in Eq. B.l: 
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42 
vs. --t 77) = j#(o)la 

q34 + -n-y) = $b(o),a {“‘f, 9’) 4 
(B.1) 

In these formulae the power of a: can be read off the Feynman diagram. We expect electron 
and positron to annihilate by overlapping at the origin, so we expect the proportionality to 
the wave function at the origin squared since that is a probability density. Since the proba- 
bility density is proportional to mass cubed, and since the decay width has the dimensions 
of mass, then the width is dimensionally as times the wave function squared divided by the 
square of the mass. That form could be argued for on purely dimensional grounds. In fact, 
as seen below, 

r - &ww 
- a6M , (B-2) 

r/E - a3 

the singlet decay width is proportional to the fifth power of Q times the mass which means 
that the width per binding energy is proportional to a 3. This means that for weak coupling 
the positronium states are extremely narrow on the scale of their binding energies. The 
faster positronium rate is measured to be I’ons(e+e-) = 5.3 x 10-r’ GeV. The expected 
rate is l? m a5M or 2 x 10-r’ GeV for M = 1.0 MeV (ignoring reduced masses). This 
confirmation of the calculation spurs us on to apply the picture to new physical systems. 

What we would like to do is find a bound system of quark and anti-quark in nature which 
approximates the situation for positronium. Without going into a justification for that, let 
us look at the 11, meson and assert that this is a bound state of a charmed and anti-charm 
quark system. Assuming that the binding is weak, we will take half of the $ mass to be the 
charmed quark mass of about 1.5 GeV. This means the Yukawa wavelength is about 0.12 
fermis and the first Bohr radius is the Yukawa length over n for strong interactions (a,). 
The radius is about 0.4 fermis for an cr, of 0.3. Let’s try to get a confirmation of that a, by 
looking at the data in Table B.l. 
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Table B.l. 
Charmonium Mass Splitting 

4 - %. = 3.097 - 2.980 GeV 
Mx(2++) - M,,(l++) = 3.558 - 3.510 GeV - (a,)‘M 
M#++) - M,(O++) = 3.510 - 3.415 Get’ 

l-($J) = 63 KeV 

The spin-spin splitting between the + and the nc gives an estimator of a, since the spin-spin 
splitting we saw in Section A is proportional to (a,)l. That gives us an estimator of LI, of 
about 0.44. Similarily, looking at Table B.l the spin-orbit splitting, which is proportional to 
/?” which for Coulomb binding is equal to os gives us a comparable estimate for a,. 

At least we are self consistent in that we assume nonrelativistic binding and we get an 01, 
which is not too large. The decay rate for the +J into anything is measured to be 63 kilovolts. 
We use the results given above in Eq. B.l, for Coulomb binding and also assume Coulomb 
binding to estimate the wave function at the origin. We find that, approximating the $ total 
width as the triplet S decay into three gluons, solving for o, gives us that the triplet width 
is proportional to the mass of the 11 and proportional to a, to the sixth power. Putting in 
the numbers leads to an Q, of 0.22. This example is certainly encouraging because it tells 
us that $, n., and x states behave as if they were composed of a quark anti-quark system 
bound together by gluons with the strength which is of order 0.2 which means we have a 
nonrelativistic system. 

Having fortified ourselves with an example which works, we will now go on and attempt 
to construct the hadrons. All of the hadrons are formed from three fundamental constituent 
quarks up, down, and strange. The idea is to explain the multiplets of hadrons in the 
nonrelativistic quark model. We want to explain the quantum numbers, masses, decay 
widths, and decay branching ratios. The quantum numbers of the six types of quarks are 
given in Table B.2. 
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Table B.2. 
Quantum Numbers of Three Quark Generations 

A. QUAmuM NlJMmcm 
Each WuIk Ius win 1R lie add&in quantum nvmbcn ,mk 

uua tavon numba - 113) or Ike known ,ancl pm”lnnl, qti 
arc shown in the ubk. 

Quuk WP Nlwor~ 

Quantum numtm d u I e b I 

0 - ekclnrchugc + ++ -f +I -f ++ 

II - z*ompmento,iunpin -f +f 0 0 0 0 
I 1 

First let’s add the spins of a quark and an anti-quark together. Now of course we know 
the answer to this, spin half plus spin half gives you a singlet spin zero and a triplet spin one. 
This means that a quark and anti-quark system will give you pseudoscalar mesons and vector 
mesons. However, it is instructive to look at this in a graphical way as shown in Fig. B.3.a 
where we have a fundamental doublet representation with spin-up and spin-down. When 
we add spin-half plus spin-half, you can do this pictorially by putting the center of gravity 
of one fundamental doublet on top of the other doublet. Then you find you have a triplet 
and a singlet where the top and the bottom of the triplet are easily seen to be up up and 
down down as shown in Fig. B.3.b. In the case of quarks, we have two additive quantum 
numbers which are the third component of isotopic spin and the strangeness. Fundamental 
representations of SU(3) for the 3 quarks and anti-quarks are shown in Fig. B.3.c. 
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Fig. B.3.a: Locations for fundamental SU(2) representation. 

202 dd ;,” uu s 
-3 0 

Fig. B.3.b: Formation of 2 64 2. 

4 

S 

3 

Fig. B.3.c: Locations for fundamental SU(3) representations. 

dS p-- 
/ -9,“” 

t d-ii y" q- o 
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’ ‘1 / ,’ 
13 

su ‘a-‘& ST 

Fig. B.3.d: Formation of 3@3. 
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303 

Fig. B.3.e: Formation of 3 @ 3. 

There are two fundamental representations for quarks and anti-quarks. Let’s find the 
SU(3) representations of 3 @ 3. This is done graphically in Fig. B.3.d. There are obviously 
nine possible quark anti-quark combinations and one visualizes them in the analogous way by 
putting the 3 representation on top of each element of the 3 representation. It is extremely 
easy to read off the quark and anti-quark content of all of the states on the periphery. Its 
quite easy to see that the decomposition leads to a singlet and an octet. Similarily the 
folding of 3 @ 3 for a two quark system leads to a sextet and an anti-triplet as shown in Fig. 
B.3.e. If we combine them with yet another quark we would find the three quark baryon 
representations: 

282 = 1@3 

3@5 = 1@8 

3@3 = 6@5 

3@3@3 = 1@8@8@10 

(B.3) 

To make the identification with the multiplets of the quark and anti-quark system, we look 
at the meson entries to the particle properties tables shown in Table B.3. 
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Table B.3. 
Meson Summary. 

P.dd deal mod” 
Mmss 

Pu9~ M 
Fdl 

r!dttL r Fnnia(W Pb 
PUiiCk - mob. (Me”, (MeV hl* lUPpII limib w *m 90% CLj w.GV,c, 

NONFLAVORED MESONS 
z+ 119.57 0.0 
P 

LzIQ2.l 
134.96 7.57 se SUblC Pl”iCk S”rnrnla-y Table 

r0.u l ” 

‘I Qx 3 148.8 I.05 k”lral 
f 0.6 rO.,J kr” chrwd 

drn LYL2 770 
Z35 

I53 rr 
=Z ML” r-f 

pee - ,6,9+0.3~ k” LL Y 
t-e- 

70.9 see SUbk Pamclr 
29.L summrw Tabk 

= IO3 358 
0.046 t 0.005 

o.ax~amnd 
372 

0.001s +o.c.cd 
170 
384 

S-%tl 189 
For UDce.7 Lwn,lL KT fool”o,e e 
'17 

,w mnd r from neutn, mode. 
4713) QILl.3 782.6 9.8 1-1-d 89.6 -0.5 

rO.2 30.3 -5 8.7f0.J 

975c 13' 
r4 :fJ ;; 
s. I .4* 

fd975) W 
vu 5,975, 

Od9SOl 
wa &9*o) - ',":" 1; 

QF3Z.O) Qllx 1019.5 4.22 
20.1 Z0.13 

r?Y 
- 

462 
362 
501 
II0 
499 
499 

h,(llVJ~ c!LLz 1190 320 P1 YTn 327 
w‘u ",I ,901 -60 f JO 
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The pseudoscalar mesons have a strange particle doublet and a nonstrange particle 
isotriplet as do the vector mesons. These are identified with the K or K* and the K and p, 
respectively. The splitting in mass among members of given multiplet is due to SU(3) break- 
ing. The splitting between multiplets, for example, between the pseudoscalar and vector 
mesons is due to spin-spin splitting. We will quantify these splits later. Certainly the pre- 
dicted octet and singlet structure for pseudoscalar and vector mesons is a very encouraging 
sign that SU(3) is a reasonable symmetry scheme. 

For the baryons we have a three-quark system and there are 27 possible combinations. 
We have asserted that this decomposes into a singlet, a symmetric octet, an anti-symmetric 
octet, and a decuplet. This is something one can continue in the style of Fig. B.3.e and 

prove for onself. As far as the spins go, a 5 + $ gives you a singlet and a triplet. Recoupling 
with a third spin half quark gives you total spin of i or g. The parity is (-l)L so the S wave 

baryons have parity plus. That means one expects a i’ octet and a i’ decuplet. In fact 
when flavor SU(3) was originally proposed by Gell-Mann, the R- was as yet undiscovered 
and it’s prediction and subsequent discovery was considered a triumph for SU(3). The O- 
and l- meson octets, the 3’ octet and the i’ decuplet are shown in Fig. B.4. 

Y 
X0498 K+ 494 

x-494 K”‘498 
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Fig. B.4: pseudoscalar mesons, vector mesons, octet, and decuplet baryons. 

There is one problem, in the sense that looking at the Cl- it consists of three strange 
quarks bound together. It is flavor symmetric. Since it consists of three identical Fermion 
quarks in an L = 0 state, it is spatially symmetric. The decuplet is spin i so all spins have 
to be up. That is a spin symmetric wave function, and so the R- is spin, space and flavor 
symmetric. Yet it is a system of three Fermions and must be totally anti-symmetric. In 
order to solve this problem another quantum number called color was postulated. Having 
started as an ad hoc way to save the spin/statistics theorem, it has become the charge of the 
strong force in the guise of quantum chromodynamics. Each quark comes in three colors; 
red, green, and blue. For example, the R- is a strange red quark, a strange blue quark, and 
a strange green quark. It is color anti-symmetric and the complete wave function is totally 
anti-symmetric. 

There remains the nagging problem of the relationship between current quarks and con- 
stituent quarks. A glance at Fig. B.5, which shows the interaction between an offshell 
photon with a quark in the proton, tells us that BJ’s x variable is a measure of the momen- 
tum fraction carried by the proton if all the relevant mass scales are small with respect to 
the invariants q2 and p. 9. Thus deep-inelastic scattering and the scaling observed there im- 
plies that the mass scales associated with the quarks are small for these current interactions. 
But if that is so, then how is it that three quarks or a quark and anti-quark can make a 
system which has a mass of typically 1 GeV. To see that there is no paradox involved, let’s 
imagine a system of N massless current quarks which is confined (by a mechanism we don’t 
understand precisely) to a region of radius a. This confining “bag” has a phenomenological 
energy density B which is confining the system. The energy of such a system is the sum of 
kinetic terms 
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(e~+$)z = ma 
~3h4~+9~+2~p.l7-m~ = 0 

“8, = -q=/2p_. q N c 

Fig. B.5: Scattering of a virtual photon off a quark with momentum fraction e. 

and the bag energy itself, since all the energy contributes to the mass: 

E = ‘$ p, + B (Fa3) 

AxAp - 1 

PS - l/a 

E 

(B.4) 

The uncertainty principle tells us that as we confine the system to smaJer volume the 
momentum of the constituents goes up. That tells us that the kinetic term increases as 
the volume goes down whereas the energy associated with bag confinement has an opposite 
behavior. A stable system occurs at a minimum of the energy when the bag energy and the 
momentum associated with the confinement are balanced: 

i3Elaa = 0 

a = (N/4aB)f . 

E, z M = ;(N/a) 

(B-5) 
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At this value of radius, the mass of this composite system is proportional to the number of 
constituents and inversely proportional to the confining radius. The confining radius depends 
on the bag parameter B. 

As an example, if the mass is a proton mass and we take three constituents for N then we 
find that the size is 1.6 fermis. This is certainly a piausible number and that’s the size needed 
to get a proton mass from confining three massless quarks to a certain volume of space. It is 
certainly compatible with the size that we get from the elastic electromagnetic form factor 
which is probing the distribution of charge inside the proton. It is also compatible with the 
pp cross section which is something like ?ra *. If we take 40 millibarns, we find a radius of 
a = 1.1 fm which is again in the right ballpark. 

What this means is that the constituent quark mass arises from the kinetic energy and the 
confining potential energy. The constituent mass is an effective mass somewhat analogous to 
the effective mass for electrons moving in a crystal. We have shown that the massless quark 
confined to a typical system of size 1 fermi acquires an effective mass of about 300 MeV. 
This analysis also warns us that the mass of a quark bound in a quark anti-quark meson is 
not necessarily the same constituent mass as the same quark bound in a three quark baryon. 
In order to understand the masses we clearly need to understand the dynamics. However, in 
the future we may gloss over this fact and assume that the up quark has some constituent 
mass which is independent of the binding situation. One should always keep in mind that 
this is an approximation which is clearly not true in general. 

21 



C. SU(N) and Hadron Multiplets, Electromagnetic Mass Splitting 

Before starting with SU(3) multiplets, lets recall the situation with SU(2) isotopic spin 
multiplets. Remember that the proton and neutron have only a 1.2 MeV mass difference. 
The cause of this is the degeneracy of the up and the down quark; this is the basis for isotopic 
spin. Now obviously SU(3) symmetry is more badly broken because the A is split from the 
neutron by 176 MeV. The difference in quark content between those two is to replace a down 
quark in the neutron by a strange quark in the A. We expect that the main breaking in the 
SU(3) symmetry is mirrored in the fact that the strange quark is heavier than the up and 
down quarks. 

For SU(2) the basis states are the up and down quarks and any state can be expanded 
in terms of up and down quarks. The generators are the Pauli spin matrices. They satisfy 
commutation relations and anti-commutation relations as given below: 

u = (+i=(;),x=(;) 

z:ul = (; &%=( y ;+q; yl) 

b.,Q,l = ‘2% G,rrfl* (C.1) 

{Qllfl,) = 2&, 

s’ = a/2 

In general, one should recall that for SU(n) there are n2 - 1 generators represented by 
hermitian traceless n by n matrices. In going to SU(3) the basis states are now up, down, and 
strange quarks and any general state x can be expanded in terms of them. Now n* - 1 = 8 
generators and they satisfy commutation and anti-commutation relations which are more 
complicated. The fundamental representation for those commutation relations are shown in 
Table C.l. 
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Table C.l. 
Commutation and anti-commutation relations for the SU(3) generators AZ. 

ak f& 
123 L 
147 I/Z 
156 -I,2 
246 l/2 
257~ 10 
34s 112 
367 -I,2 
458 v5,2 
678 vs/2 

ak d& 

118 l/v5 
146 111 
IS7 112 
228 l/V3 
247 -10, 
256 l/l 
338 l/V5 
344 112 

[An&] - w,&, 

{bh} - +*I + Zd&A< 

where I II. dxd unit mmir. Thhe,ak are add under ,,,c pmu. 
won of my tir of indices. while tic db PR even. 

In the funduncnW Mimcnrmml repanmuon. *C A,‘r aE 
nc nonzem we” by 

denlen” are 

‘7k 

35s 

db $-[i;;] A+;;] A,-[;-;;] 

l/2 

g g +gJ +[;;-j A+;] 
668 778 888 :/;$ +- 1 ; -a] AII- 11” ,,) J 

Looking at that table, it is fairly easy to see that the first three generators are the familiar 
isotopic spin generators from the SU(2) subgroup of SU(3). Those generators connect the 
up and the down segments of the state x. The 4th snd 5th generators and the 6th and 7th 
generators have been traditionally called the V spin and the U spin. V spin connects the up 
and strange quarks while U spin connects the down and strange quarks. The 8th generator 
is diagonal, as is As, since there are two additive quantum numbers: 

u 

X-+ 
i 1 

d 
* 

F’ = 92 

I+ E Fl h 2 Fz Ia = F3 . 

u, z Fe zh I F, 

v, rz F, f t Fs 

Y = 2Fs/&i 

(C.2) 

The ladder operators are I+, U*, V+. The two quantum numbers Is, (third component 
of isotopic spin) and the hypercharge, Y, are related to charge Q, baryon number B, and 
strangeness S as follows: 
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Q = 13 + (B+S)/2 

(C.3) 
= 13 + Y/2 

The Gell-Mann/Nishijima formula is the name given to Eq. C.3. The action of the I, U and 
V ladder raising and lowering operators on the fundamental triplet representation of SU(3) 
is shown in Fig. C.1. 

I+ 
d 

v 

U 

U+ v’ 

s 

I’ Xr,r,s connects 

? Xe,s connects 

i7 Xs,r connects 

Fig. C.l: Subgroup operators acting on the lowest dimensional (3) representation of SU(3). 

At this point we want to look at a result we will need later in examining one gluon 
exchange among hadron constituents. We will start out in the SU(2) case because it is 
extremely familiar and then extend by analogy. In the SU(2) case what we are interested 
in is the expectation value of the square of the isotopic spin. One way to evaluate it is to 
use the fact that it is the same for all elements of a given representation. We then find the 
expectation value at the top of the ladder. One uses commutation relations to evaluate the 
expectation value at the top of the ladder using the fact that the third component of isotopic 
spin is equal to I at that location. This technique is shown in Eq. C.4: 
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Ia = e Z,I, = $+,I-] +13” 

[I+,I-] = 2k3 (C.4) 
<II> = I,‘+13 = 1(1+1) 

We find the familiar result that the expectation value of the square of the isotopic spin is 

I(IS1). 

For SU(3) we proceed in B completely analogous way and some of the steps are outlined 
below: 

F= = f: F,F, 
I=1 

= ;[I+,I-]+z; 

+ ;[u+,u-I . (C.5) 

+ ; [V+V.] + F,’ 

< F’>= I,1+2I,+ F,’ 

In this case we need the commutators for the I, U, and V spin ladder operators. One operates 
on the “top” of the representation. For example, for the triplet, looking at Fig. C.l., that 
would be operating on the up quark state. The result shown in Eq. C.5 is similar to the 
result for SU(2). One has to remember to evaluate at the “corner” of the representation. 
Some results for the SU(3) length operator are given in the accompanying table and are 
easily worked out. Just for reference purposes one should note that the minimum value of 
this length occurs for singlet representations of SU(3). Th ese results will be used in the next 
section. 
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Table C.2. 

Expectation values for the “length” F2 in 
lower dimensional SU(3) representations. 

6 lo 
3 

8 3 

10 6 

At this point we would like to complete the identification of the elements of the meson 
octet that we started in Section B. You remember, we combine quarks and anti-quarks to 
obtain a singlet plus an octet of pseudoscalar and vector mesons in S wave. When we were 
folding representations of 3 and 3 together we found that at the center location we had 
s#,uti, and dd overlapping one another in the strangeness/isotopic spin space area. One 
simplication comes because the strange quark is an isotopic singlet so the isovector pion (in 
the octet) has no strange content. 

A word about anti-quarks in the phase conventions which have been adopted. These are 
illustrated in Fig. C.2.a. As you recall G parity is defined to be charge conjugation plus a 
rotation about the Ir axis in isotopic spin space. It is so defined that for a system of n pions 
the G parity is (-1)“. Performing these operations on a u quark it turns into a d anti-quark, 
whereas a d quark under G parity turns into a -a anti-quark. The doublets are u, d and 2, 
-a. This phase is illustrated in Fig. C.2.a. 
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G(m) = (-1)” 

G = Ce’“” 

12 

H 

II A+ 
.. 

.=ij 
+----a-, 

/-/,I 

11 

13 
Uci 

Fig. C.2.a: G parity operation acting on u and d quarks. 

6)’ 
i 
5 cfru~ufl, 

uu 
g, = +p - Ulr) 

Fig. C.2.b: Spin states for qq composites. 

As far as spin goes the combinations are a symmetric vector and an anti-symmetric scalar 
spin state. The composition in terms of quark and anti-quark are shown in Fig. C.2.b. 
Armed with this information one can find the SU(3) content of the multiply occupied origin 
containing uti., d& and aB. The singlet should be a flavorless equally weighted composite 
of alI q?j (suitably normalized), whereas the isovector part of the octet can be formed by 
reference to Fig. C.2.a using the G parity phase convention. Then the isosinglet element 
in the octet can be formed by constructing a state orthogonal to the first two states. The 
result of these operations is shown below: 
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jl> = &a+dlJ+sa) 

18 >I = ++dd) (C.6) 

18 > o = $(uti + dd- ‘i&L+) 

An extended set of 16 such wave functions is given in the accompanying table where one is 
generalized to 4 quark possibilities, the up, down, strange, and charmed. In most of what 
follows we only need SU(3). 

Table C.3. 

Wave functions for the meson nonets, O- and I-. 

Mao0 

IS K+ 
K* 

x+ 
x0 
x- 

‘I 
KO 
K- 
F+ 
D+ 
DO 
DO 
D- 
F- 

I - % 
1 rl’ 

SW31 
UlUltipliCity wwc rlmctioo 

a ti 
8 di 
8 -d 
8 (ti - dayJ2 
8 dd 
8 (6 +dd- 25WJ6 
8 -d 
8 si 
j d 
j -cd 
3 ai 
3 --UC 
3 -de 
3 - $2 
1 bi+dd+d-3d)/,/12 
1 &i+da+u-+cc7 
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tdam q-3) mul~ty Wan fuwtioa 

K** 8 
K*’ 8 

$ ! 

p,., 8 8 
Kg- 8 
0 mixed 

$* 
mixed 
mixed 

F** 3 
D*’ 
De0 : 
DO“ 3 
D*- 3 
F*- 3 

ti 
-2 

(mi -dmJI 
dri 

-d 

$+P/$ 

cc. 
ci 

-d 
ti 

1: 
- s.2 

Having now found the SU(3) content of the quark anti-quark meson states lets apply this 
result to look at meson electromagnetic form factors. Since we have composite hadrons, we 
know there will be a form factor when the system is probed by photons via the electromag- 
netic interaction. As seen in Eq. C.7 below the amplitude for the electromagnetic interaction 
sandwiched between initial and final plane wave states gives you the Fourier transform of 
the charge distribution. 
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It is easy to imagine that one is measuring in such a situation the electromagnetic charge 
radius squared which is also defined below: 

A ;r / eeskl’ (*) e’k*zdq -a< flH\t > 

- e 
J 

e14Tpo & 
T 

CC.71 

<TZ,> = 
J 

p(r)T*d; 

The data for these experiments is shown in Table C.4. One finds mean charge squared 
radii of order 1 fermi which is not surprising. We also find that the kaons have a smaller 

charge radius than the pions. What is most interesting is the neutral kaon has a negative 
charge radius. Lets try to see if we can explain this in a very simple fashion. 

Table C.4. 
Data on electromagnetic squared radius. 

First, we will define a center-of-mass coordinate for the quark and anti-quark system 
and the mean squared charge radius is then the deviation from the center-of-mass position 
squared weighted by the charge of the quark and anti-quark constituents. Doing a little bit 
of algebra we get the resuit shown in Eq. ‘2.8: 
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’ = 
Cm& + m&) 

(ms + mq) = CM. Coordinate 

s’ G ?r - Fs = Relative Coordinate 

<Tk> = 
(Qqm; + Q&l < 6’ ’ 

(m* + m# 

(C.8) 

Having done the algebra, let’s assume SU(2) y s mmetry, i.e., the up and down quark have 
the same constituent mass and the strange quark is heavier by a factor 7. In that case, its 
easy to work out what the mean charge radius is for the case of rr+, K+, and K": 

m" = rlzd~rn 

m. s ym 

< T:, >r+ = < P >* 14 

< T2, >K+ = < 6’ >K (2-,’ + 1)/3(1 + -,)’ (C-9) 
< T;;, >KO = < P >K (-72 + 1)/3(1 + r)l 

7 = 1.5 

&T-x - 1.25fm, \/<61>K - l.Ofm 

Right away it is easy to see why the K” has a negative square charge radius. That is because 
you have a light d quark which is orbiting around a heavier 3 quark and that light d quark 
is negatively charged. If the anti-quark mass is very large with respect to the quark mass 
than the mean charge radius just approaches a limit which is the quark charge times the 
mean squared relative coordinate. In other words, when you probe lightly into the charge 
distribution what you are seeing is the charge of the light objects which are orbiting out at 
large distances. 

If we take a 7 value of 1.5 this gives us a reasonable agreement with the observed ratio 
of the K” to K+ charge radius, because in that case, that ratio is only a function of 7. One 
can try to push this a little farther and compare the x+ to the K+ and extract from that the 
ratio of the mean squared deviations. We find that the ratio of K+ to K+ is about i. We 
expect that kind of situation because you remember that the scale of the system size goes 
like one over the mass. In fact, putting in -y of 1.5 we can extract the mean separation to 
be 1.25 fermis for the pions and 1.0 fermi for the kaons. These sizes are also in reasonable 
agreement with our bag estimates of size. 

Another electromagnetic effect we can look at with mesons is the electromagnetic mass 
difference. The mass differences for pions, kaons, D mesons, B mesons and some baryons is 
given in Table C.5. 
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Table C.5. 

Electromagnetic mass splittings for mesons and baryons. 

M’-MO 

WV) 

4.60 
-4.05 
4.7 f 0.3 

-4.0 f 3.4 
-1.29 
-3.1 
-4.9 
-6.5 

In order to try to explain the data we will use an over simplified model which assumes that 
the electromagnetic mass is due to the fact that up and down masses are not exactly the 
same. There is an explicit SU(2) breaking and the quark and anti-quark have a mutual 
Coulomb interaction which causes another contribution to the mass splitting. We ignore 
hype&e interactions in this approximation. An expression for the mass in this model is 
given in Eq. C.10: 

M = MO + n(md - mu)+ < Q~Q# > M, 

Qq = ;,-; 

Me - < ala >= 2 MeV for a = 0.8 fm 

(C.10) 

We expect that for binding on the scale of one fermi, the parameter M, for the Coulomb 
mass is going to be of order a few MeV. Using this expression for the mass of a composite 
qrj meson and the wave functions which we just found for the meson octet states we can 
evaluate the masses for the r+, #, K+, and K”: 

MT+ = K- = Ma + (md - m,) + :M, 

M@ = ~O+(md-m,)-~hfc 

MK+ = Mo+(m.-m.)+iMc 

MKO = M,+(m,-mu)-iMc 

-( md - mu) 

(C.11) 
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For example, in the A+ the $ expression is the $ u times the 5 2, whereas for the no 

massthefactor&is$x(($)‘+(i)s) . whtch reflects the equal mixing of uii and ddin the 

isovector x0 wave function. 

Solving for the mass differences as shown in Eq. C.12, we find the Coulomb mass param- 
eter and the up and down quark constituent mass difference: 

M,+ - M-0 = MC/2 
Me = 9.2MeV 

MK+ - MKO = Me/3 - (md - m,) ’ 
(C.12) 

mu-md = -7MeV 

As expected, the Coulomb mass parameter turns out to be of order MeV. We also tind that 
the up and down quarks are degenerate on the scale of a few MeV. This result is clearly a 
reflection of the goodness of the isotopic-spin symmetry which we have assumed from the 
beginning. Twenty years ago we used to worry; the K+ was heavier than the K” as expected 
for an internal net positive charged distribution. However, the neutron was heavier than 
the proton. This was a major puzzle. The Standard Model (which “explains” alI) now 
tells us that this is so because the d quark is heavier than the 11 quark. Armed with this 
enlightment, we seem not to have advanced very far; the Standard Model says nothing about 
quark masses. 

Using the x’s and K’s one can make a simple prediction for heavier flavor states. Replacing 
the up by a charm quark, one expects the D+ to Do mass difference to be similar to the 
?r+to rr” mass difference and replacing the strange quark by a b quark one expects the B+ 
to B” mass difference to be similar to the K+ to K” mass difference: 

MD+ - Moo L M,+ - M,o (u --t c) 

MB+ - MB0 A MK+ - MKO (3 -+ b) 

(C.13) 

A glance at the table shows us that these expectations are born out quite well. 

We will now turn our attention to baryons. Let us begin by forming di-quarks in 3 8 3. 
When we did that in Section B, we found that 3 @ 3 consisted of a sextet and an anti-triplet. 
The sextet is symmetric since it contains uu, dd, and ss on the periphery while the anti- 
triplet is anti-symmetric. It is easy by using ladder operators to step uu down or dd up in 
order to find the other elements of the sextet. The 3 states are orthogonal to the 6 states, 
by construction. These are shown in Table C.6. 
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Table C.6. 

qq content of the 3 @ 3 representations. 
7 

I reo I (10 I reo I 
i 

6 5 
(S) +1;:,,, (A) &(ud -du) 

dd 

;;(ua + au) 

$&da + ad) 

j&i3 - au) 

-$ds - ad) 

ss 

Continuing on to form 3 quark states we cross 3 @I 3 8 3 as shown below: 

3 c3 (3@3) 
3 8 (6$3) 
3 ‘8 6$(1$8) . 

(1@8) $ S’$lO(S) 

We get 9 states from 3 @ 3 which are the familiar singlet plus octet. The decomposition 
of 3 @ 6 gives us another octet and a decupiet which is completely symmetric. The reason 
we know the decuplet is completely symmetric is because it contains elements such as uuu, 
ddd, and sss and the symmetry of a representation is the same for all elements of that 
representation. One of the difficult points is that we only have eight physical baryons but 
we have two octets. The reason for that is that there are two ways to get to the octet. One 
is from a 3 @ 3 and the other is from a 3 @ 6 and the two octets have a mixed symmetry so 
there is a double counting between two octet elements and one physical baryon. 

Perhaps a simpler way to see this is to look at the spin coupling which is needed for the 
3 quark system. The representations are given in Eq. C.15 while the states are shown in 
Fig. C.3: 

282 = I@3 
2@(2@2) = 2@(2@4) ’ 

(C.15) 

When we couple spin i to spin f we get spin 0 and spin 1. Now obviously spin 1 is the 
symmetric state because you need, for example, both quarks in spin up states to get to spin 
1 whereas spin 0 is anti-symmetric in the 2 quarks. Recoupling the third quark to the spin 
1 we get a total spin : which is again symmetric, as shown in Fig. C.3.a., for the 4 possible 
projections of spin :. For spin f, if the 2 quarks are coupled to spin 0 then we have an 
anti-symmetric situation with a third quark defining the spin projection. Whereas, if the 2 
quarks are coupled in a symmetric spin 1 state, the system is recoupled with Clebsch-Gordon 
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coefficients one can find in the particle data tables to total spin i in a symmetric way. It 
is these two possibilities that lead to a mixed symmetry spin state for total spin i in the 3 
quark system. 

1 

(hR) Ti 
1;;;; ; ;g; 1;;; ;; ;$ (a 
(UU) u I 

Fig. C.3.a: qqq spin coupling for .J~ = $+, symmetric. 

(i?U - Ufr) l-r /d (A) 
(ivkd) = 

+ NrrU + Urr) ft -2(m) Ul /A 

I 

(S) 
(l-N - Ufr) u /fi (A) 
+ KlN + Ufr) u -2(W) h] /A (S) 

Fig. C.3.b: Jp = $+, mixed symmetry. 

Looking at the spin subsystem, which is a system we are more familiar with from nonrel- 
ativistic quantum mechanics, should make the SU(3) wave functions for the baryons rather 
easier to understand. A full set of these wave functions for both octets and the decuplet are 
shown in Table C.7. The analogy between Fig. C.3.a and the A wave functions, and Fig. 
C.3.b and the proton and neutron wave functions should be obvious. 
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Table C.7. 

Baryon decuplet and octet wave functions (zero charm). 

A” 
A* ;+*+duuyJ3 
A0 (dd+&i+dduN.J3 
A- dd 
2** (trw+wu+suiyJ3 
r** (dr+d+*li+dsu+aud+sWi+h 
t*- (ddS+dSi+ddN~3 
E.’ ~urr+au+rrmyJ3 
z.- (&+sds+s4/~3 
n- w 

Baryon Wave luaction 

o-act 1 
P 
n 

A0 
2’ 
P 

z- 
p 

s- 

(tad - udu - dw)/./b 

(udd + dud - ?ddu)lJ6 
$d + sud - dsn - sdu) 

(2uu.s - ILN - suu)/J6 

(2uds + 2dus - usd - dsu - sud - sdu)&h 2 
(2ddr - dsd - s&i-&j6 

(YU + sus - tmr,/J6 

fdsr + sds - zud)/J6 

octet 2 

P (du - duu)lJZ 
II (d - d4.h 
Aa (2llds-2dw+sdu-dry+ud-sumfJlZ 
Z’ (UN - slluu,f2 
P +@d+dnr-sud-sdu) 
z- (dsd - sdd&/2 
2 bus - rurvJ2 
E- (ds.s - sds)/.,‘2 
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Comparing the tables for the meson and baryon wave functions, one can see that in octet 
two for the baryons the anti-symmetrized quark-quark product state plays the role of the 
anti-quark to form the octet. In this sense, the di-baryon acts as if it were an anti-quark in 
terms of the flavor properties of the system. 

What about predictions for electromagnetic interactions of baryons? In this case we wilI 
take a short cut and utilize one of the SU(2) subgroups, the U spin which we have referred 
to already. If we write down the electromagnetic current in Eq. C.16 we see that the photon 
obviously does not change the charge: 

;iiy,,u - &,,d + B-/,s) = &=&?,ijy+.q . 
3 I 

Looking at the fundamental triplet we recall that the U spin connects d and s. So U spin 
muttiplets all have the same charge. That means that the electromagnetic current must be a 
U spin singlet in order that the photon, indeed, not change charge. The implication is that 
the electromagnetic contribution to the mass of the system must be the same for all U spin 
multiplet numbers because the photon is a U spin singlet. For the baryon octet the U spin 
multiplets are the p/C+ doublet, the neutron/Co/E0 triplet, and the C-/Z- doublet. That 
leads to the following relationships between Coulomb contributions to the hadron masses: 

(MC)?3 = (Mch+ 

(MC), = (M&o = (MC)20 . (C.17) 

(M& = (Mk- 

Solving this set of equations, we have the results shown in C.18: 

Mp - M, = ML+ - Mx- + MS- - Mze 

(C.18) 

-1.3 Mel’ L -1.6 Met’ 

This relationship is quite well satisfied and is thus a good test of the symmetry for the octet 
baryons. 

Following in this mode we have a prediction for another electromagnetic property, the 
magnetic moments of the baryons. Again the elements of the two U spin doublets and the U 
spin triplet all must have the same magnetic moment. Data for the octet magnetic moments 
is given in Table C.8 and one can see that these relationships are at least crudely correct. 

37 



Table C.8. 
Baryon octet magnetic moments. 

Parti& Experiment Quark Model 

p -0.685 2.38 2 -0.67 
0.02 

IT 
2.7 

-1.11 2 0.03 -1.1 
zo -1.85 -1.25 t 2 0.75 -0.50 
x0-+ A 0.01 -1.4 1.8 2 

0.2 1.6 
A.0 momcnlr arc in ““its Ol Y,. I” the 2’ - .h case. the 
mlacnt &tikr the MI transitmn I” - AI. Thhe L- and I- 
moment nmas”lemC”t~ arc new: 2’: Ankenbnndt ,198,): 
1‘: Hertzog ,1983,. 

However, the U spin symmetry assumes that SU(3) is not broken and we know this is not 
the case. That being the situation, we will defer more detailed discussion of baryon magnetic 
moments until later when we can confront the problem of SU(3) symmetry breaking in order 
to get better agreement with the data: 

I43 L pp, 2.4 2 2.8 

pn =/LEO 2 l-k.1 -1.9 2 -1.2 . 

FE- Z /As-, -1.1 : -1.9 

(C.19) 
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D. QCD and Strong Mass Splitting 

In this section, we will continue our studies of mass relationships in the SU(3) multiplets 
for meson and baryons. In particular, we will look at the strong mass splitting. In doing so 
we will attempt to use QCD inspired versions of the potentials in each case. 

For example, in the vector meson octet the wave functions for the central members are: 

1~’ > = &(-uti+ dd) 

/ws > = $(uii + dd- 24 . 

~WI > = $=(uti+ dd+ SB) 

(D.1) 

We have already derived these wave functions in Section C. We also know that SU(3) is 
rather badly broken because the masses of the multiplet members are not degenerate. This 
means that various SU(3) representations will mix. For example, the physical n and 7)’ (which 
are isotopic-spin singlets and are both pseudoscalar) are, in fact, going to be mixtures of the 
SU(3) octet and singlet members. 

We can get an idea of the magnitude of the SU(3) b reaking just by counting strange 
quarks. The results for both the mesons and the baryons are shown in Table D.l below. 
For the baryons this result is known as the decuplet equal spacing rule. One can see that 
a rough representation of the mass is obtained just by counting up the constituent quark 
masses, assigning the up and down quark the same mass of roughly 300 MeV, and assigning 
the strange quark a mass 150 MeV higher. For the vector octet and the baryon decuplet 
we get a reasonable representation of the masses just by counting the strange quarks in this 
way. 
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Table D.l. 

Strange quark mass splitting. 

n 1670 3 150 
mu +a md - 300 Mel’ 
m. - m, - 150 Mel’ 

Now let’s look at the vector meson nonet, or octet plus singlet. The first observation, 
using the wave functions shown in D.l, is that if there were no mixing the physical w would 
be the octet w and would have 2s~ in the wave function. The physical singlet, the 4, would 
be the SU(3) singlet and would have 1s~ in the wave function. That is clearly not true 
because the w has a mass of 783 MeV while the 4 has a mass of 1,020 MeV. This means that 
we do indeed observe representation mixing due to SU(3) symmetry breaking. For example, 
we can set this up as a rotation as shown below. 

(‘,y ) = (Lp+dd?) 

= ($$)(::g 
tan& = ’ e - 350 

75’ I- 

P.2) 

We picked the particular rotation angle of about 35” in order to achieve “ideal mixing.” 
We do this for a couple of reasons. The physical p and w are almost mass degenerate. That 
means the w has to be rotated in such a fashion as to have no strange quarks. We also do 
it because the 4 appears to behave as an almost pure ss state. Diagramatically the decays 
of the 4 are shown in Fig. D.l. What is observed is that the 4 seldom goes into prr or 3 
pions and prefers to go into a K+K- pair. In fact, the relative partial width into 3 P. for 
the 4 and w are only 7%. One can explain this on the basis that the KfK- decay proceeds 
via the two gluon annihilation diagram whereas the px decay proceeds via a three gluon 
annihilation diagram. This is called the OZI rule but in fact it is more of an observation 
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than a rule. It represents the cost of a higher power of the strong coupling constant in the 
amplitude. 

Fig. D.1.a: 4 decay into K+K- via 2 glum annihilation. 

y+;;; =0.07 

Fig. D.1.b: 4 decay into prr via 021 violating 3 glum intermediate state. 

This ideal mixing angle yields a pure ss C$ and an w and p which are degenerate, in 
agreement with observation. Using these wave functions we extract the mass relations for 
the vector octet given in Eq. D.3: 

M1+2m MW 
<VlHlV> = Ml+m+m,= nii,, 

MI + 277~. MQ 
P.3) 

m, s rnd E m 

Solving these equations, we have two constraints which are reasonably well satisfied as shown 
in Eq. D.4: 
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a) M+ - M.y* = MK. - Mw 

N m, - m = (7 - l)m 

130 MeV : 107 MeV , 

b) MK* = (Mw + M+)/2 

892 MeV & 901 Mel’. 

P.4) 

Now we turn to the pseudoscalar meson nonet where the picture is somewhat more 
complicated. In this case, the * and the 11 are quite split in contrast to the p and w so we 
expect that the mixing will not be ideal. Using the wave functions just as we did for the 
vector nonet we obtain the octet and singlet masses shown in Eq. D.5: 

M.+2m W 
<PIHIP> = M.,+m+m, MK 

MO+-= M,,, ’ (D.5) 

In Eq. D.6 we explicitly show SU(3) breaking. The strange and up quark mass difference 
connects the different SU(3) multiplets. The matrix element for octet and singlet mixing is: 

<dHlqa > = 5 <zlii+dd+s~lHl(u~+dd-23~) > /& 

= -&Cm-m.) 

2x.5 = y-41 - 7) 

Solving Eq. D.5, the singlet and octet pseudoscalar masses are quite close to the physical 7 

and q’ masses: 

‘t& - M, = 3M,,,,M,,, = 613 Mel/ - M,, = 550 MeV 

(D.7) 
2M~+hf, = 3M,,,, M,, = 1132 Mel/ - M ,,, - 960 Mel’ 
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This means that while there is mixing, we expect it to be rather small. Now we will 
explicitly solve for the mixing angle as shown below in Eq. D.8: 

(I;<) = (2:;: 2;:) (I;::) 
( 2 hi+ ) = ( -z 22) ( 2: 2:) ( -2:: 2;: ) . (D.8) 

tax?& = IMK-lU*--sM~ 
sM,‘-IM~+‘u. 

t?, - 24’ 

The octet and singlet states are rotated into the physical states. This is accompanied by 
a diagonalization of the mass matrix in the physical state representation. Solving for the 
angle, we find that the pseudoscalar mixing angle is 24’. 

This appears to be all right. However, there are certain relationships which are indepen- 
dent of the mixing. For example, the center-of-gravity of the nonet, as defined in Eq. D.9, 
is independent of mixing: 

~1 MT, + Mm = 2MK=Mq+M,t 

992 = 1510 MeV , 

bl Ku, + Mu, = 2MK, = M, + M+ 

1780 = 1803 MeV 

For the vector nonet the center-of-gravity relation is very well satisfied, whereas for the 
pseudoscalar nonet it does not work at all. A failure like this normally means that we are 
forgetting something important. What we have assumed for representation mixing is that 
it is entirely driven by the strange/up quark mass difference. However, there are other 
physical processes which are going on. For example, flavor singlets like ss can annihilate 
into multigluons and reform in other flavors such as ML That means that the gluons, which 
are flavorless, also mix SU(3) representations. They are SU(3) singlets since gluons cannot 
carry any flavor. This is an effect which we have been ignoring up till now. 

Since the gluons don’t know about flavor, we will assume that the annihilation amplitude 
is an SU(3) invariant A. That means that the annihilation amplitude does not contribute 
to the octet mass nor to the octet/singlet mixing. It merely contributes to singlet mixing. 
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Therefore, the mass matrix is as shown in Eq. D.10 (see Eqs. D.5 and D.6): 

M,, = 7(1+ 2Y) 

Mm = T(2 + 7) 

M 18 = $x(1 - 7) (D.10) 

&f=?!! 
[ 

P+27) Jz(l-7) 
3 xh(l-7) (2+7)+z 1 

9A 
I= zm 

This matrix has exactly the form previously given in Eqs. D.5 and D.6 with the addition 
of the SU(3) singlet annihilation amplitude due to annihilation into gluons. As you recall 
from the solution of the eigenvalue problem, the trace and the determinent of any matrix are 
invariants. That allows us to easily write down the trace and the determinent of the mass 
matrix in terms of the eigenvalues Xl and X2: 

A* +x2 = ?[3(1 +-y) +z] 

(D.11) 

AlA;1 = g97 + 2(1+ Z-Y)] 

If the annihilation amplitude A is 0, then the sum of the eigenvalues (which are the 
physical masses) which result from diagonalizing the mass matrix are a statement about the 
center-of-gravity of the nonet, D.12a: 

a) x1 +x2 = 2m(l+y)=2Mp=Mu,+M+, 

b) XI + AZ = 2m( 1+ 7) + 3A1= ~MK- + 3A1 , 

c) x1 +x2 = ~~(I+~)+~Ao=ZMK+~AO, 

4 AI - 6.3 MeV, Ao - 172 MeV 

(D.12) 

If the annihilation amplitude is non zero, one can solve for the amplitude necessary to make 
the center-of-gravity relationship work out. This is shown in Eqs. D.12 b and c. We find 
that for the vector nonet, A is only 6.3 MeV, while for the pseudoscalar nonet it is 172 MeV. 

44 



In the context of QCD we expect the annihilation amplitude to decrease rapidly with 
mass because we know that QCD is asymptotically free. This means that the coupling 
constant decreases as the mass increases. We also remember that a O- state can couple to 2 
vector gluons but a l- state cannot. You will recall this from our discussion of positronium. 
Thus in this gluon annihilation model, we expect the vector amplitude to be suppressed with 
respect to the pseudoscalar amplitude because it costs another gluon or another factor of 
LT. in the amplitude squared. The implication is that we can, in a plausible fashion, explain 
the mass relations for the multiplet members within the pseudoscalar nonet. We do need 
singlet mixing but it is an effect that we expect in QCD. Moreover, the mass dependence 
and quantum number dependence of the annihilation amplitude appears to follow trends we 
would expect in QCD. 

It appears that the quark anti-quark mesons in the lowest S waves can thus have their 
mass relations explained in a satisfactory way. Note that we have as yet said nothing about 
relating the pseudoscalar and vector states. What about higher angular momentum states? 
What can we say about them? The quantum numbers of such a state follow from non- 
relativistic quantum mechanics for bound states of fermions and anti-fermions. The parity 
is (-l)L+’ and the charge conjugation quantum number is (-l)L+s. That means we have 
a well defined sequence of quantum numbers. Any quantum numbers outside that model 
are called exotic. In fact, it is a justification for the quark model that no meson with exotic 
quantum numbers has yet been observed and substantiated. For example, a state Jpc = of- 
has exotic quantum numbers. The expected series of quantum numbers for S, P, and D states 
are shown in Table D.2 along with the observed states. They fit nicely into the progression 
of nonets which one expects. For example, it looks as if almost all of the elements of the 4 
nonets expected in P wave have been observed and fit into the repeating nonet structure. 
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Table D.2. 

Orbital of mesonic excitations 
with sum-orbit factors shown. 

L(S Jpc <L.S> Nonet 
/ 0 1 o-+ / T II 7’ K 

0 0 0 0 

1 1 1-- 1-- w w 4 4 K’ K’ 

0 0 If- If- 0 0 li li Q Q 
o++ o++ -2 -2 6 6 E E s* s* n n 

1 1 

1 1 1++ 1++ -1 -1 -4 -4 D D 
2++ 2++ 1 1 Aa f f’ :* Aa f f’ :* 

0 0 2-+ 2-+ 0 0 A3 A3 L L 
1-- 1-- -6 -6 

1 1 2-- 2-- -2 -2 
1 3-- 1 4 Ig &J K” j 

Let’s look at the spin-orbit splitting that we talked about in Section A. The result (fa- 
miliar from atomic physics) is: 

J‘” = (i + $1 = i* + ,p + 2i. s’ 

(D.13) 

<Z.&F> = [J&7+1)-L(L+l)-s(s+1)]/2 

If we assume that the splitting among the P wave states is simply due to spin-orbit splitting, 
we can write down a relationship between the nonets in P wave. As shown below the isovector 
members of the 4 nonets in P wave seem to follow this relationship quite well. 

a) (M,++ - MI++) A 2[M1++ -M,++] 
Ar(1310) - A1(1100) = 2[A,(llOO) - 6(970)] 

210 Mel/ = 260 MeV , 
(D.14) 

b) KoIM 1 ,(f;.$) ai 
M,++ -Ml++ 

ffS - 0.3? 

Referring to our previous derivation (Eq. A.4) we can relate the spin-orbit spIitting to 
a. as in Eq. D.14.b. We obtain a reasonable value of (r, using the 2++ to l++ isovector 
masses. Note that M., is - 200 MeV. We can estimate spin-spin splitting from the meson 
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Octets, hf.,.. - MK. - M,( w 390 MeV. Hence, the spin-orbit and spin-spin splittings are 
comparable. This behavior is as expected for composite systems composed of equal mass 
constituents. 

The spin orbit relations, although it is satisfying that they seem to be fulfilled, don’t 
make any connections between the states with different L values. If we try to see if there 
is some simple relation we can plot the mass of the members of a nonet versus their total 
angular momentum .I as seen in Fig. D.2.a. In that figure, we have picked elements of 
the recurrences of the p meson; p, A2, g, etc. In Fig. D.2.b we have looked at the higher 
excitations of the A++. 

4- 

J - 

0 I t I I I I 
0 2 4 6 

(Mass)* in (G&l’ 

Fig. D.2.a: Orbital excitations of the p. 

15/2 - 

I t I I ! 
0 2 4 6 6 IO 

(Mass)* in GeV 

Fig. D.2.b: Orbital excitations of the A. 
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We observe that there seems to be a linear relationship between the angular momentum 
and the square of the mass. It also seems that the same slope works for both the mesons 
and the baryons. The slope appears to be about (0.9 GeV)-r: 

J = a+a’M2 

(D.15) 

akq r a& E 0.9 GeV-= 

This is a very interesting set of relationships and one wonders if QCD can shed any light on 
them. One can make a picture of the quark and anti-quark bound together by gluons. QCD 
tells us that the gluons form a flux tube of flux lines which is flattened into a string. This is 
so because the gluons are themselves colored. Hence the flux lines attract one another and 
compress into a tube. In QED the photon is not charged and the effect does not occur. So, 
what we will do is assume a gluon string with a certain energy density per unit length k. 
This model is shown in Figure. D.3. 
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94 4 

Fig. D.3: String picture for qq and qqq bound by gluon flux tube. 

In that figure, we have assumed that the diquark at the end of the string is in a flavor 
3 state which means that the quark anti-quark rotational properties should be very similar 
to the quark diquark rotational properties. We have then built in the fact that the Regge 
slope for mesons and baryons is the same. In this very simple string model we willassume 
massless quarks and that the ends of the string rotate at the speed of light at the maximum 
angular momentum. That means that the velocity as a function of the distance from the 
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center of the string is as given below: 

M= I ykdr = 2 I 
612 kdr kr,?r 

0 m=T- 

TyPkdr , (D.16) 

a’ = && 

The relativistic mass is just the energy density per unit length integrated over the lengths. 
Since the string has an angular velocity, the total system energy which is the total mass is as 
in Eq. D.16. Similarily the relationship between angular momentum and linear momentum 
is familiar but we use the correct relativistic expression for linear momentum. Since the 
slope of the Regge trajectories is a relationship between L and the square of the mass, it is 
easy to relate the Regge slope to the string tension. We will come back to their numerical 
relation later. For now it is sufficient to note that this simple picture explains the existence 
of the Regge trajectories and the fact that the Regge trajectories are the same for mesons 
and baryons. One can certainly consider that a phenomenological success for QCD. 

At this point, we have reasonably successful explanations for the masses of the pseu- 
doscalar and vector mesons and their orbital excitations. I will just assert that one can have 
a similar success with the octet and decuplet baryons and their excitations. However, we 
have yet to say anything about the relationship between, for example, the pseudoscalar and 
vector octet and the baryon octet and decuplet. In order to begin to study this relationship, 
we want to digress a moment and talk about one gluon exchange potentials. In QED the 
one photon exchange interaction energy is proportional to the product of the charges. That 
means that positronium is bound because the electron and positron have a negative energy 
and so the interaction is attractive whereas e-e- is unbound. For nuclei there is a similar 
SU(2) isospin relationship for the two nucleon system where you can have neutron neutron, 
proton proton or neutron proton. The isotopic interaction energy looks like the vector prod- 
uct of the isotopic spins of the constituents. That means that only the isoscalar is bound due 
to the one pion exchange. The deuteron is bound whereas pp and nn are unbound. These 
relationships are given below: 
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~1 QED 
HEM - el.ez 

e+e- bound HEM - -1 
e-e- 
e+e+ 

unbound HEM-++1, 

b) Isospin SU(2) 

HI - &.I; 

nP bound HI - -3(1= 0) 

PP unbound 
nP 

Hr - +I(1 = I) . 

(D.17) 

In QCD, we have quarks that come in three colors and eight gluons which can be thought 
of as containing a color and an anti-color. The vertex factor in one gluon exchange in QCD 
is shown in Fig. D.4. This one gluon exchange amplitude is proportional to some products of 
the square of the length of the generators in a given SU(3) representation. We have already 
evaluated these factors in Section B and we will use these results now. 

P 
l--- a igs xR 

2 QEYP 

/ 

a 

a= 1.3 
p= 1.3 

a= 1.8 

Fig. D.4.a: qqg vertex factors. 
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: 

$ < Fz> - x <(Fi)‘> 
I 

Fig. D.4.b: OGE diagram. 

We have previously assumed that all hadrons are color singlets. For example, you can 
now (for amusement) prove to yourself that one gluon exchange is attractive in a singlet but 
repulsive in an octet. This is a posteriori justification for the idea that the quark anti-quark 
system is most bound in a color singlet. It is also amusing to show that while a diquark 
system can be in a 3 or a sextet, one gluon exchange is attractive in a 5 but repulsive in a 
sextet. This gives some justification for the idea that diquarks are in a 3 state and not in a 
sextet state. Similarly you can work out the fact that 3 quarks are in color singlets, octets, or 
decuplets but that the singlets are the most attractive. Of course one gluon exchange is not 
all that is happening in strong binding, but it gives us a warm feeling about our assumptions. 

We can now look at quark anti-quark mesons under the assumption of 1 gluon exchange. 
We evaluate the QCD potential as shown below: 

=I $ [< Ff > - < F. > - < F; >] 

b) 

V@(l) = +Y/T , 

$ [< F; > - < F,” > - < F,’ >] 

Vqq(2) = -;a./, 

(D.18) 
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These results mirror the idea (Eq. B.3) that the simplest colorless composites (most 
bound) can be made from three colors (red + blue + green = white) or from color/anti- 
color. What we find is that the quark anti-quark potential has a color factor minus 4/3 but 
otherwise looks essentially like the Coulomb interaction. In the case of baryons, we assume 
that the baryon is a color singlet. That means that any di-quark must be in a color 3 so 
that when convoluted with the other quark which is in a color triplet we get a color singlet 
baryon. That leads to a potential which is also attractive but which is only half as strong 
as the potential between quarks and anti-quarks. The main hadron binding is strong, due 
to multigluon effects. We will use our OGE results only to estimate perturbative splits. 

As seen in Table D.3, spin-spin mass splittings for mesons are larger than those for 
baryons. This is just what we expect on the basis of gluon color factors. Even more striking, 
in the electromagnetic case we would have a quark anti-quark split of different sign from the 
quark-quark split because we are dealing with electromagnetic charge. For “color charge” 
the split for 9~ and for qq is attractive in both cases. This makes any problems one has in 
understanding the sign of the spin-spin splitting for 99 and qg simply disappear. All quarks 
have color charge and that color charge is the same for quarks and anti-quarks. 

Table D.3. 

Spin-spin mass splitting 
for mesons, l-, O- and baryons !+, i’. 

Mze - Mz 1 191 
ME+ - MS / 215 

m = 300 

-A- 
7 7, 

e 630’=4M,, 
378‘ 
126 
76 
38 

3/(4X%) 
472 
280 
168 

1.0 
m, = 500 MeV ,-y = 1.67 
m, = 1500 5.0 
mb = 5000 16.6 

Let us now examine the spin-spin splitting between the pseudoscalar and vector octet. 
The departure point is the QED spin-spin splitting which we derived in Section A. We merely 
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replace the Coulomb charge by the color charge factors which we have already derived. We 
will absorb all of the factors into a spin-spin mass term except those factors which have 
values of order one, the spins and the color charges: 

87r (e,e,)($ . .$, 
Mqm = ;i- 

mm, 
INOV 

-877 
Mom = -y 

(I’. . @,‘,,(g . %, ,+,(o),z 
, 

mm, 
(D.lO) 

M,, E ‘= a* Ty ,11w)12 

We have already evaluated the spin and color factors in our previous discussion of one gluon 
exchange and spin-orbit splitting. The resultant split between the vector and pseudoscalar 
octets is shown in Eq. D.20: 

<iq.@q> = -; 

(D.20) 

We can now write the x, p, K, and K* masses in terms of an unbroken mass ,I?, the spin-spin 
mass splitting and the SU(3) breaking factor: 

M, = I%!- M,, 

M, = d2+M../3 

MK = Iii - M,,/y + (7 - l)m 

MK* = &l+ M..,/37 + (7 - 1)m 

(D.21) 
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Solving this set of equations we find the center-of-gravity for the mesons to be 617 MeV, 
a mass spiitting of 480 MeV, and a strange to up quark mass splitting of 176 MeV: 

A?i = (3Mp + M,)/4 = 617 MeV 

Ma, = 3(M, - M-)/4 = 480 MeV . 

(7 - l)m = (~MK+ + MK)/~ - it? = 176 MeV 

(D.22) 

A glance at the table of spin-spin mass splittings shows you that a simple scaling in one 
over the product of the quark and anti-quark masses works well for scaling ps to K*s with 
the strange quark, ps to Ds with the charm quark and ps to Bs with the bottom quark. This 
spin-spin gluonic contribution has solved the long standing problem of why the pion mass 
was so small. The question is...why is the pion so fight? And the answer appears to be that 
it is driven down in mass by the spin-spin QCD term. Another prediction is clearly that the 
F* and B* cannot decay into pions and have to decay electromagnetically into F + 7 and 
B + 7, respectively. 

Taking the central mass A?f to be equal to 2m we find an m about 300 MeV and the 
strange quark at about 500 MeV. These are familiar values. Taking the value of the spin- 
spin mass term, assuming an cr. of 0.3, we find the wave function of the quark anti-quark 
system at the origin to be characterized by a length of 0.8 fermis. This is all very much the 
order-of-magnitude we expect from other considerations: 

G = 2m, m = 308 MeV, ym = 484 Met’ 

= 0.3 

- (l/O.8 fm)3 

(D.23) 

What about the baryons? Clearly QCD relates the vector/pseudoscalar split in mesons 
to the decuplet/octet split in baryons. Taking the interaction to be the sum of two body 
interactions we can use the color factors which we have already derived in looking at the 
quark-quark potential: 

C<?*,.@q,>= -; 
v 

MB = ?&‘-1\1:. 
v YIYJ 

(D.24) 
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The coupling of the 3 spins is such that, if all terms are equal, we can evaluate the 
A/nucleon mass split: 

s’ = .!?I + 22 + $3 
< s; ..?z & . .$ + s; . & > = S(S + 1) - ; 

2 . 
(D.25) 

MA - WV = (;)M;,(;) = M;, 

This allows us to find the wave function (for baryons) at the origin again assuming a, = 0.3 
and m = 300 MeV: 

M’(0)lZ - (l/O.94 fm)3 (D.26) 

This value is comparable to, but slightly larger than, the value we found for the mesons. A 
look back to Eq. B.5 leads us to expect the radius scaling N 0.8 fm (f)“’ = 0.88 fm. 

What about baryons with strangeness? An evaluation of Eq. D.24 gives us the following 
result: 

41 = u,d,qz = u,d,q3 = s 

MB = < .!?I. $2 > + 
< (5 + &a) . .!G > Y 1 ‘W* 

< (s; + ;z) .s’, > = -1 (8) 

+;a (10) 

(D.27) 

For the C and C’ (uus), the uu are in a symmetric S 1s = 1 state. This allows us to find 
< jr. $2 >. The fact that the octet has S = i and decuplet has S = i allows us to find the 
remaining terms: 
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ME = &f’+;M;, + (7 - lh 

MC* = I%%’ + ;M;, + (7 - l)m 

Mx*-Mz = M:,L(MA-MN) 

7 7 

191 A 
293 
- = 195 MeV 
1.5 

(D.28) 

One sees that the data agree rather well with our expectations. Clearly we could continue 
in this manner to find the splitting for all the baryons. However, it tells us little new. 

A grand summary for the preceeding results of this section is supplied in Fig. D.5. Mesons 
and baryons are shown with a central mass I&. This level is split by spin-spin interactions, 
indicated by M,,, into non-strange vectors (p), pseudoscalars (rr) and $‘(N), i’(A). Note 
that splits for baryons are roughly half the meson splits as expected in &CD. Subsequent 
SU(3) breaking with 7 # 1 has 2 effects; reduced spin-spin splitting (due to l/m factors) and 
higher masses (due to (7- 1)m factors). These two effects are indicated as (m,-m,). Finally, 
singlets are indicated to indicate singlet/octet splits. It is clear that we have successfully 
described the major spectroscopic features of the low-lying mesons and baryons rather easily. 
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Fig. D.5: Meson and baryon multiplets with spin-spin and SU(3) splitting. 
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Clearly charm quark spectroscopy gives us a chance to apply much that we have learned. 
Taking a charm-quark mass of about 1500 MeV we can make various predictions. For 
example, it is obvious that the D*/D mass splitting is reduced by the heaviness of the charm 
quark. We expect it to be very close to the threshold for D* going to Dr. In fact, it is 
observed that this reaction just barely goes. This means that the mass relations for the 

pseudoscalar and vector charmed mesons are something that we can essentially write down 
knowing what we know about the constituent masses and the spin-spin mass splitting. Heavy 
flavor spectroscopy has a long experimental history at Fermilab. Most recently E-691 has 
contributed dramatically to the worlds data on charmed-meson lifetimes and mixing limits. 

What is a little less easy to confront with the data are the charmed baryons of which 
there are six with a single charmed quark. Clearly, the masses are not particularly well 
known and the decay modes are not at all well understood. Obviously it would be extremely 
useful to have new data on the charm-baryon spectra so that we could extend our knowledge 
of hadron spectroscopy. One can hope that that will come in the fullness of time with new 
experiments coming on-line. 

Table D.4. 
Charmed meson and baryon masses. 

SC Q.lark Name 
COlIl~lll 

MaSS= 
WMCZ) 

Lilelime W,d,W’ 
IlO’ WC, ,M&, 

rxlmlns 
o-’ CJ .oo 1664.6M.6 

CT 
4.3’0 2.0 $ 

P 1669.3M.6 10.31’0Ug,,b - 

,-- :; 
OS10 197miEs 3.5’0 So& 

0’0 2007,2tz., <5 
cd O-+ 2010 ($0 7 <2 
cr 0; (V 2113.*s 

,‘Q’? cd 0 l2420) 24.X f 6 75 +2p 

aaMos 
112’ cud AC+ 2281.2t3~0 I 943 5~0 $ 

C”” r,*+ Mv,‘)+168.4 to 5d 

Cdd IcQ WA,‘l+165.6 * 0 F’ 

cus EC. &4’, 2460 ,225 4a’29,8e 

css 0,~ (7 0) 2740~ f20 

Finally, what can we say about flavor singlet quark anti-quark states? Table D.5 shows 
the lowest lying states for SS, c?, and bi;. 
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Table D.5. 
qij mesons, O- to l- radial excitations, 

I 4(1665) I 665 

I WO97) / 

First thing one notices is that the splitting between the first two excitations is effectively 
independent of the mass of the state. Let’s look at how that might come about. If we look 
at the Sckf+&linger equation, we can make a connection between the level spacings and 
the force law which is responsible for the binding. We used the virial theorem in Section A 
where we derived the energy states of the hydrogen atom. We required the deBroglie relation 
and that there be a standing wave. In the equations below, we reproduce this calculation 
for general power law potential behavior. For example, one gluon exchange leads to the 
familiar result that the energy is proportional to the mass of the constituents and inversely 
proportional to the principle quantum number squared. For a string potential, we find that 
the mass dependence is extremely weak, it goes like (m)-‘/3. 

V s A/T~ 

E = <T>+<V> 

= <T>(l+2/N)=<V>(;+l) 

= &(1+2/N) 
= gf(1 +2/Iq[gyN 

31 + 2/N) [A(‘; $)I 1/N 
= 

EC - 1 I n* ii& (Const) 
m 

(D.29) 
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The actual behavior of the c? and b6 systems is shown in more detail in Fig. D.6. 
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Fig. D.6: Level scheme for the CE and b5 quarkonium states. 

61 



Again the level spacings are very similar and are essentially independent of the mass. 
The force seems to be flavor independent. You expect gluon color forces to be flavor and 
mass independent. Using the scaling laws from Eq. D.30 it looks as if the system has a 
mixture of one gluon exchange and confining string potentials. In fact, a potential which is 
a mix of those appears to work rather well: 

a) OGE, N = -1, A= a. 

(D.30) 

b) String, N = 1, A = k 
113 

(kn)2’3 . 

Moreover, the two spectra are fit with a, of about 0.2 which is a number we have come to 
expect. The fitted string tension is 0.16 GeV2 which is very similar to that which we derived 
in looking at Regge trajectories. The resulting phenomenological potential given in Eq. D.31 
is shown in Fig. D.7 along with the expectation value for the location of the states: 

V&(T) = -$+) + kr 
(D.31) 

a. - 0.2, k - 0.16 Gel” 

You recall that the lowest Bohr radius scales inversely with mass of the system and that 
subsequent levels scale proportional to the principle quantum number: 

a0 - 31% 

(D.32) 

a - 7m~ 

Looking at Fig. D.7, it is clear that the charmonium system does not probe the gluon region 
of the potential because it is not heavy enough whereas the b6 states (being about 3 times 
heavier) move in about a factor of 3 in radius. They begin to probe the Coulomb part of the 
potential. Obviously the spectroscopy of the top quark (when and if it is discovered) will be 
defined by the gluonic part of the potential. 
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Section II. 
Hadron Decays 

A. Coupling Constants and Cross Sections 

Having come to a reasonably successful explanation of the quark anti-quark and three 
quark systems (the systematics of their masses and their splittings) we now turn to their 
eventual fate, i.e., discussion of their decay modes. In order to begin, we need a working 
knowledge of the forces, the coupling constants, and some of the systematics of the cross 
sections. Let’s begin the review of dynamics by talking about the dimensions of coupling 
constants and their definition. We start from the definition of the action as the time integral 
of the Lagrangian which is the four dimensional volume integral of the Lagrangian density. 
This means that the Lagrangian density has dimensions of mass to the 4th power: 

s = Jut =/,a 

WI = Pfl’ 
(A.11 

We now write the kinetic terms of the Lagrangian from the Dirac equation for fermions 
and from the Klein-Gordon equation for bosons. $ denotes a fermion field and +4 denotes 
a boson field. Looking at the kinetic terms we see that the dimensions of a fermion wave 
function is [Ml: while the dimensions of a boson wave function is simply [Ml: 

L = @$, [$] = [M]$ 

(A.21 

L: = WV, id4 = [Ml 

Armed with this information, we can look at the Fermi interaction which is of the current- 
current form. We know that the current can be made up out of fermion bilinear operators, 
and that leads us to the conclusion that the Fermi coupling constant has dimensions of 
[Ml-? 
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a) 

PI = [Ml-’ , 

b) L = d,A“ = g($r,ti)&’ 
[sl = Pf1° 

%Q. 9 

(A.31 

cl L = gc$’ . 

On the other hand, the QED or QCD Lagrangian is a current-field interaction with an 
associated dimensionless coupling constant called c~ or a.. Finally, for completeness a 4’ 
theory has a dimensionless coupling constant and that is why it is popular with theorists. 

Let’s look briefly at the comparison between the electromagnetic and the weak potentials. 
We will define a weak coupling constant gw. We know that the Compton wavelength then 
leads to a Yukawa like potential or a propagator with a mass term. If we are in a situation 
where the q value is small with respect to the mass of the propagating boson, we can write 
an effective current-current interaction relating g,,, to the Fermi constant: 

VEM(T) = a/T 

VW(T) = (g&/T)e-“*w 

(A.4) 

Vw(d = g&/(42 + WC) 

3 = g&/aM& = awlaM& 

Looking at Eq. A.4, it is clear that if g& were of the same order as a, what would make the 
weak interactions weak would be the Yukawa exponential in the potential. For example, at 
a q value of 10 GeV the weak potential would still be roughly 10,000 times weaker than the 
electromagnetic potential. 

Having looked at the coupling constants one can now consider the dynamics and the cou- 
pling scheme. First let’s just look at electromagnetism and recall the free Dirac Lagrangian 
which is given in Eq. A.5: The interactions in electromagnetism are included by changing 
the derivative to the co-variant derivative which has the photon field in it. That leads to a 
standard J, . A’ interaction term: 
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L = $[a,-/‘-m]$ 

a, -+ D, = a,, - ie A, (A.5) 

LJ = -4&,llr)A’ 

In the case of the weak interactions, we construct charge-changing interactions because 
we have seen p decays for many years. The attempt is to use the Gell-Mann Nishijima 
relationship but in this case for weak isospin and weak hypercharge. The gauge particles are 
a triplet of SU(2) bosons and a singlet of U(1) with coupling constants gr and gi. One then 
writes down derivatives completely analogously to the minimal coupling scheme: 

Qw = (L+Y/2)w 

w+,w”, w- > sq-4, 92 

B0 9 U), 91 

D, = 8, - 2 [Sl(Y/2)B:: + SJ. fiu] 

We want one of the physical bosons, the photon, to couple to charge. Since Q is not an 
SU(2) or U(1) generator we need to make a rotation of the neutral members of these two 
symmetry groups. If we do that we can demand that one of the rotated members couple to 
charge: 

cos ew sin BW B0 
sinew cos BW )( 1 w 0 

D=a-a 
(giY/2cos Bw + gaZssin6’w)A + g2(ZfW- + Z-W+) 
(g2Zs cos 0~ - glY/2 sin ew)z 1 ’ (A.71 

gl(Q - Zs) cos Bw + g2Z3 sin BW E Qe 

glcosew = e 

gzsinBw = e. 
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A pictorial way to visualize what is going on is given in Fig. A.l. Obviously, we will still 
have a neutral boson coupled to the weak charge. That means we are going to have charged 
and neutral currents in a unification scheme of electromagnetism and the weak interactions. 

92 

Fig. A.l: Rotation of the SU(2) and U(1) fields by flw to form the physical fields A and Z”. 

As one can see in Eq. A.8, one has a specified coupling of the neutral-current boson Z” 
in terms of charge, weak isotopic spin, and the Weinberg angle Bw (which is measured 
elsewhere). Clearly gZ is related to the more familiar charged weak decays. 

a) D = ~-~[eQA+g~(Z+W-+Z-W+)+Z(-g,(Q-zs)sin~~+g,z,cos~~)] , 

b) -a& sin Bw + g1Z3 sinew + g2zs cos ew 

= dm [-Q sin* Bw + Z3 sin’ ew + Z3 COS* Bw] 

= dm [Z3 - Qsin’ Bw] , 

c) D = a-t [e~~+g~(z+w- +Z-w+)+~~(z3-QsinZew)z] . 

(‘4.8) 

The specified couplings are the photon, which we are familiar with, the charged-weak current 
coupling constant g2 and a weak-neutral current which is specified in terms of the Weinberg 
angle. What about masses in the theory? Recall the kinetic term in the weak isotopic doublet 
of scalars which are going to be the Higgs scalars. If we demand local gauge invariance then 
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the covariant derivative contains the photon, W, and the Z “. If the vacuum has a condensate 
(or the Higgs field has a vacuum expectation value) then the kinetic term with this covariant 
derivative has contained within it terms which generate a mass for the W and Z. The photon 
is forced to be massless: 

(W)*(%+) --+ (W)*(D“d) 

The W and Z masses are proportional to the vacuum expectation value of the Higgs field 
and are given below: 

Mz = JZGL/&. (A.10) 

Mz = bfwlcosew 

In fact, the W and Z masses were predicted by measuring the Weinberg angle using data 
on weak-neutral current interactions. The vacuum expectation value can be related to the 
Fermi constant which is measured from p decay interactions and is 175 GeV. This is then 
the characteristic mass associated with the weak interactions. For example, the W and the 
Z masses are about 80 and 95 GeV, respectively: 

Mw = gzq/& 

5 
= &/8M&,gz =gw 

q = kfi= 175 GeV 

(AX) 

Having thought about the coupling constants and the dynamics of decays, let’s now turn 
their kinematics. In quantum mechanics the Schroedinger equation with complex energy 
has a wave function solution which decays exponentially. That is the definition of the decay 
width T. The Fourier transform of the wave function into energy space yields the familiar 
Brite-Wigner resonance form: 
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aa$jat = H$,$ = e-Ix’ 

H = M-+8/2 

(A.12) 

1~4~ = l/ [(E-M)’ + UP)*] 

What about decay phase space? Non-relativistically phase space can be derived from the 
statement that all momenta are equally probable. Hence, the density is the joint probability 
of momentum elements in the three coordinates x, y, and z. The joint probability is just the 
volume element in three momentum space. This is a familiar form from statistical mechanics. 
Relativisitically one particle phase space is just the statement that all four momentum volume 
elements are equally probable. However, there is a constraint that the particle is on the mass 
shell. This leads to the form given in A.13 for the one particle volume element: 

h(p) N b(p* - m*)d4p = dF/2E (A.13) 

- dp:dy, y = rapidity 

One of the implications of this result is that the invariant one particle inclusive cross- 
section should display a rapidity plateau. We know from the definition of rapidity that the 
width of this plateau should increase logarithmically with the energy. This means in turn 
that the mean charge multiplicity should increase logarithmically with the energy. In fact, 
this is actually observed as shown in Fig. A.2: 
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Fig. A.2 Mean charged multiplicity in pp collisions as a function of ,,G. 

What about two particle phase space ? As seen in Eq. A.14, for a two-body decay mo- 
mentum conservation is imposed on the joint probability of two one particle phase spaces. 
Evaluating in the center-of-mass or starred system, we can integrate over pz using momentum 
conservation. We can then readily integrate over the angles of particle I: 
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dp, - s(P - PI - PZ)~(P: - m:)b(p; - m;)d4p,d4pz 

= b(M - E; - E;)S(s + $)(dpt/zE;)(dp;/2E;) 

(A.14) 

Pa - 
I J(M - E; - W$$(&, 

-I 
6( M _ E; - E;) ‘;;;‘F 

; 2* 

Specializing to decays into equal masses, one can convert the integral over energy. We find 

that the relativistically invariant 2 particle phase space is proportional to the velocity of the 
decay particles in the center-of-mass system. It is intuitively clear that a decaying particle 
is more likely to go into light particles than heavy particles: 

M --+ m+m,E;=E;=M/2 

Pa - / 6(M - 2E;) (2) dE; . (A.15) 

- P; 

Let’s look at a sample calculation which is first order in the weak interactions; the decay 
of a W boson into lepton pairs. The width is defined in Eq. A.16 below: 

I-. - lA12~~I~ 

(A.16) 

The helicities and vertex factors are shown in Fig. A.3. We will be discussing the helicities 
implicit in the V-A weak interaction theory later. For now, you will just have to take it as 
given. 
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Fig. A.3.a: Helidty factors. 

Fig. A.3.b: Vertex and polarization factors. 

Fig. A.3: W -+ Ed decay. 

The amplitude is proportional to the lepton current dotted into the W polarization with 
a vertex factor given by gw. Squaring and summing over the spins one finds that IAJ’ is 
proportional to g&M’. The decay width is proportional to the vertex factor squared times 
the mass. This is exactly what you would expect from purely dimensional arguments. 
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cl-4’ - g&M= 

(A.17) 

Let us now turn to the cross-sections for processes which are strong, electromagnetic, 
or weak. Knowing about the coupling constants and the quark model, what can we say 
about total cross-sections? We can make a very crude assumption in meson-baryon and 
baryon-baryon scattering that there is an impulse approximation. Then what is important 
is the single scattering of the constituents. What is given on the accompanying table is the 
counting of the constituent quark-anti-quark, and quark-quark scattering. 

Table A.1. 
Constituent collisions in hadron-hadron scattering. 

9 

6 - 

3 I I25 I 
3 17 I 

3 

1 
3 20 

40 
9 45 

3 35 I - 

The strange quarks are treated differently from the up and down quarks. One thing you 
can see right away is that meson-proton cross-section is roughly Z/3 that of baryon-proton 
value. This is exactly what you expect from counting. In a little more detail, you can take 
the value of the total cross-section which is given on the table and extract cross-sections for 
the constituents given in Eq. A.18: 

u(qq) - u(qq) -44.5 mb 

a(@) - CT(@) - 2.2 mb 

- 4P) 

(AX) 
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The data is shown in Fig. A.4. 
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Fig. A.4: Compilation of meson-baryon and baryon-baryon cross-sections. 
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The quark-quark and quark-anti-quark scattering cross section for up and down quarks is 
about 4.5 millibarns, whereas the quark-strange or quark-anti-strange or anti-quark-strange 
cross-section is consistently smaller than that. It is about 2.2 millibarns. Those two numbers 
are sufficient to give you a good estimate of all measured meson-proton and baryon-proton 
scattering cross-sections. No dynamics have gone into that estimate of the cross-section. In 
fact, it is not at all clear that the impulse approximation or the additive quark model should 
be taken seriously. You can consider it a mnemonic device if you wish. 

What about electromagnetic interactions. 7 A first example is the total photon-proton 
cross-section. A diagram is shown in Fig. A.5.a. This is called the vector-dominance model. 
The couplings connecting photons to the vector mesons are all of order a, which means that 
the cross-section should be down from a typical meson-baryon cross-section by order Q. If 
we take the up cross-section we get a photon cross-section as given in Eq. A.19. The actual 
data is shown in Fig. A.6 and is surprisingly close to this estimate. 

;; 

Fig. A.5.a: yp total cross section. 

Fig. A.5.b: e+e- annihilation. 
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Fig. A.5.c: ve annihilation. 
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Fig. A.5.d: ee elastic scattering. 
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Fig. A.5.e: ep deep inelastic scattering. 
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Fig. A.5.f: up deep inelastic scattering. 

Fig. A.5: Pointlike constituent scatterings. 

Let us consider other point-like electromagnetic cross-sections. An example is e+e- an- 
nihilation. It is easy to get a dimensional estimate of the cross-section because there is only 
one length scale in a problem, the center-of-mass energy. We also know diagramatically that 
the cross-section should be proportional to 2. The estimate would be that cross-section 
goes like $. The exact result is given in Eq. A.19. 

U(-fP) - Q’T(“P) 
- 146 pb , 

b) cT(ee) N 4?&/3s 
= 87 nb/s(GeW) , 

u(ve) IX 2g$a/n(s + M$)’ + Zg&/r-s = Z&/TS 
--t 2g$,s/xM:, - GZs/ir , 

4 du/dt .x 4mZ/tZ --t +$ [F’(t)] , 

e) d2afdtdr = 4mx*/t= {F,(z) [(E - E’)/Ela + - - -} , 

f) d=uJdtd+ = a$,,/mr(t + M$)* {&(z)[(E’ - E)/E]’ + - - -) 

FJ+) [(E’ - E)/E]’ + - - -} 

(A.19) 

What about the total cross-section for neutrinos? In this case, one replaces (in A.19b) 
the photon by a W boson and the electromagnetic-coupling constant by the weak-coupling 
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constant as seen in Fig. A.5. In this case, there is another mass scale besides the center-of- 
mass energy which is the W mass. This leads to an expression for the cross-section given 

in Eq. A.19.c. The limit when the center-of-mass energy is well below the resonance at 
the W mass, is proportional to the center-of-mass energy. We expect low energy neutrino 
cross-sections to grow like the center-of-mass energy. This behavior is observed for the total 
cross-sections. We will say more about that later. 

We will also mention differential cross-sections. Let’s start with elastic point-like scat- 
tering. The paradigm for that is Rutherford scattering of electrons. Diagrammatically and 
dimensionally there is only the one scale which in this case, is the four momentum transfer t. 
Notice that if you turn the annihilation graph (Fig. A.5.b) on its side it is top&g&ally the 
same graph so this is not a surprising statement. We expect that da/dt should be propor- 
tional to $. The exact expression is given in Eq. A.19.d. One can also get that expression 
by realizing that the interaction energy is the Coulomb energy. In this case the scattering 
amplitude is the Fourier transform of the interaction energy which is F. Therefore the square 

of the amplitude for this process is $. This is familiar from Rutherford scattering. For ex- 
tended objects, such as electron-proton scattering one has an elastic-proton form factor. It 
measures the faster fall-off with momentum transfer that one sees from an extended object 
with respect to point-like objects. 

For inelastic-electromagnetic scattering one can see from looking at Fig. A.5 that this is 
very similar to elastic scattering. However, there is a new variable which is the fraction of 
the momentum carried by the quark or the x value that we talked about previously. 
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Fig. A.6: Compilation of total cross-sections for yp, UN, and PN. 

The doubly differential cross-section with this new variable and the momentum transfer is 
essentially the Rutherford scattering cross-section times the source function for quarks in 
the proton with that x value plus some other terms which are more complicated. The point 
is that this is just elastic scattering of point-like fermions with a source distribution. 

For deep inelastic-neutrino scattering, one can appeal to electromagnetic scattering and 
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change the propagator and the coupling constant. One can then relate the coupling constant 
to the Fermi constant and obtain a completely analogous expression in the case of inelastic- 
neutrino scattering. However, in this case, at low energies, the propagator effect is very small 
as opposed to the situation in electromagnetism where you always have a factor l/P in the 
cross-section. The differential cross-section becomes rather simple. 

Again, the total cross-section increases linearly with the center-of-mass energy. It looks 
like the total neutrino-electron scattering except there is a source distribution for partons 
with the momentum fraction x. Integrating over t, since the upper limit on t is s, we get a 
cross-section which increases with s. We know the x range of the source function, integrating 
over all x, will just give us a number which leads us to believe that the neutrino nucleon 
total cross-section is just proportional to the Fermi constant squared and the center-of-mass 
energy. Data at low energies have been compiled and are presented in Fig. A.6. An estimate 
of the slope of the rise of the neutrino cross-section with s is given in Eq. A.20. It is gratifying 
to note that this estimate is within the ballpark of the data. 

d’crjdtdx --t g {[F,(z)] (E’ - E/E)’ + - - -} 

du(vN)/dx - 

u(vN) r.. G’s/?r 

= 3.7 x 10-3scmZ/GeV 

(A.20) 

Having built up a feeling for the coupling constants, the dynamics, and the kinematics 
with a few examples we can now go on to examine weak, electromagnetic, and strong decays 
of the hadronic systems that we studied in the first Section. 
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B. Weak Decays of Gauge Bosons, Leptons, & Hadrons 

We are now armed with the coupling constants and phase space. Our goal is to explain, in 
this Section, the various weak decay rates and decay branching ratios of all of the particles. 
In the first Section, we tried to find a simple explanation for the quantum numbers and 
masses of the various composite hadrons in terms of the quark-quantum numbers. We were 
reasonably successful. Now we want to look at, for example in Fig. B.l, the lifetime and the 
decay modes of all the particles. We start with the gauge bosom since they have the simplest 
decays. We have already looked at the gauge boson couplings in the previous Section. 
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Fig. B.l: Table of particle properties for gauge bosons and first two lepton generations. 

Let’s start with the gauge bosons. The photon is the electromagnetic-gauge boson. We 

know that it is stable to the limit of our measurements. What about the electroweak gauge 
bosons. the W and the Z? We know that they couple with leptons through the weak coupling 
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constant which is of the same order of the electromagnetic coupling constant (1. Therefore, 
we expect that first order weak transitions cause the decays of the W and the Z’s into leptons 
and hadrons. The coupling scheme for the W and Z is shown in Fig. B.2. The charged W 
makes a charged current transition to all leptons pairs and all quark pairs which are allowed. 
We will discuss what allowed means later. We will assume that there is a universal coupling 
for all allowed charged pairs. The only proviso is that we need to count each color separately, 
so there is a factor of three for the three colors of the quarks relative to leptons. 
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Fig. B.2: Coupling scheme for decays of W and Z mesons. 

Dimensional arguments lead us to expect that the widths are proportional to g& and 
the mass of the parent. That is familiar from our discussion of phase-space. Electroweak 
unification means that aw is some multiple of cr. Hence, by dimensional arguments, an 
estimate of the width is shown in Eq. B.l: 

rw N szv~w -c&w. P.1) 

You recall from our discussion in Section A that knowing the Weinberg angle one can predict 
the W mass from the Fermi coupling constant. This mass turns out to be about 100 GeV 
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and that means that the W width is about 1 GeV. Note that this is a “weak” transition. 
However, we are at a ma5s where, by definition, the weak and electromagnetic strengths are 
comparable. For ’ MY:: mass objects we expect to have a much narrower width for weak 

decays. .As :::gards branching ratios, under the universality assumption, we just have to 
COU! ” ::nal states weighted by the color factor. This ansatz leads to the branching ratio 
sb Eq. B.2: 

B(W-+ pv) N l/9 

63.2) 

B(Z-+pjL) N l/21 

These predictions for the masses and widths of the electroweak bosons have been spectacu- 
larly confirmed in the last few years at hadron colliders. 

Now let’s turn to lepton decays. We will assume the neutrinos to be massless and abso- 
lutely stable. In fact, there are only limits to the mass of the neutrinos. The electron is the 
lightest lepton and we assume that it is stable. The lightest non-trivial decay to consider 
is that of the p lepton. The decay diagram for p decay is shown in Fig. B.3.a. Obviously 
the way to make this decay is to take the W decay diagram that we have already talked 
about and sandwich it with lepton pairs on both ends. This means that lepton decays are 
second order in the weak interaction. Therefore, we expect the decay rates to be very re- 
duced because the masses are light and r is proportional to a*. Finally there is an enormous 
suppression factor due to the fact that the masses of leptons are light and therefore the 
intermediate W propagator factor will be tiny. 
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9, 

Fig. B.3.a: Decay diagram for /A decay. 

a3 



P+ 
ue - 

- B---e + 

%y 

Fig. B.3.b: Helicity factors in p decay. 
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Fig. B.3.c: Decay diagram for T decay. 

Let’s work this out in a little detail because it is very instructive. The current and 
differential decay rate are given in Eq. B.3: 

G= 

JP - 

dl? - 

x = 

1.2 x 1O-5 GeV-’ 

%(l - 75)y 

(%) [&I { G”M; [2(3 - 22)]} 

PXwl/2), 0 < 1: c 1 

(B.3) 

We assume V-A coupling in the current. The differential width integrated over everything 
but the electron momentum is as given in Eq. B.3. The phase space factors are outside the 
parenthesis. Inside the parenthesis we have dynamical factors relating to the fact that we 
have a 4 point fermion coupling. This coupling gives us the Mz. The V-A structure within 
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that 4 fermion coupling, in other words the Lorentz structure, is responsible for the factor 
x(3-2x). The reason for that factor is that the V-A theory imposes an helicity structure on 
the fermions. That structure is shown in Fig. B.3.b. The electron prefers to recoil against the 
2 neutrinos, which means the electron will be fast, which is the x factor. If we now integrate 
over all possible electron momenta we find that the width is dimensionally proportional to 
the fermi constant squared times the parent mass to the 5th power. 

Another way to see this dependence is to argue that since it is a second order process it 
should go like cz* times phase space. Hence the width will be proportional to the mass and 
the propagator W for the available q value, the propagator squared is just (M,/Mw)‘: 

ar - 47rp.dp.G’M; [2(3 - ‘Jr)] 

- G”M;+‘(3 -2z)dz . P.4) 

I? w G’M;: - aw( -$j’ J% 

If there were no dynamics (that means if the factor in parenthesis in Eq. B.3 were just one), 
we would have the result shown in Eq. B.5. The width is just proportional to the mass: 

d; z ($)&-M,d= . 

II 

Finally, how does this work? The observed lifetime is 3 x 10-l’ GeV. That is because, 
in fact, the dimensional argument is true but there is an enormous numerical factor. If one 
does the numerical factor correctly we get the right value for the muon lifetime which is 2.2 
microseconds: 

r.** P A 3 x lo-” Gel’ 

G’M” 
rr = ---!t GaM5 - 1.9 x lo-‘s GeV 

192n3’ * 

So in fact, the calculation of the muon lifetime works nicely. 

P3.6) 

What happens when we go to the next generation, the T lepton? Are succeeding gener- 
ations of leptons fundamentally different ? The diagrammatic representation of that decay 
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is shown in Fig. B.3.c. In this case, since the r is heavier it can decay into lepton pairs 
containing electrons, muons, and quarks. That means that we expect the branching ratio 
into electron and 2 neutrinos to be a fifth. This is very close to the observed branching 
fraction: 

B(T-+ em) N L J 0.17 . 
5 

One can easily scale the lifetime by observing that formally the T decay is exactly the same 
as what we just did for the muon decay except that the parent mass is heavier. We would 
scale by the 5th power of the parent mass. The resultant decay width times branching 
ratio for the 7 is exceedingly close to the observed value. Just as a reminder, this is an 
extrapolation over six orders of magnitude in decay width. Since it works out we can have 
some confidence that we understand the dynamics: 

qr-+ eiW) N rlr = 3.4 x lo-= Gel’ L 4.2 x 10-‘3GeV . P.8) 

The successes of these estimates lead us to believe that we understand the weak decays of 
gauge bosons and leptons. Flushed with this success, we want to begin to look at the weak 
decays of hadrons. In order to do that, first we have to understand the weak transitions 
between quarks. Observationally there are some rules which are obeyed in weak transitions: 

r(P + K+T-) 
r(K+ -+ T+To) - 500, AI=; 

c+ jt ne+v, AS=AQ (B.9) 
No Flavor Changing 

B(@ -+ p+p-) = 9 x 1o-8 Neutral Currents 

Experimentally, there is the AI = l/2 rule, which is seen in K decays, the AS = AQ rule, 
and the absence of flavor changing neutral currents. We can begin to incorporate these rules 
by performing a Cabibbo rotation of the down and strange quarks by an angle 0,. We identify 
the charged transitions with the SU(3) g enerators for I spin and V spin ladder operators. In 

this situation, the neutral currents which would occur between say d and s are cancelled by 
the existence of the charm quark. This is called the GIM mechanism and, in fact, the charm 
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quark was predicted in order to cancel flavor changing neutral currents. The currents are 
shown diagrammatically in Fig. B.4. 

Jh - COS 8, (ud) + SIN 6% (5) 

Jh - cOS ~3~ (d + CT) + SIN& 6-7) 

JhO - uii + c-d-da- si 

Fig. B.4: SU(3) Generators for quark transitions. Quark weak current with Cabibbo 
rotations. 

We have built in a mixing for the quark-weak transitions such that the strong eigenstates 
(quarks) are not the eigenstates which participate in the weak interactions. They are rotated 
by the Cabibbo angle. This is an arbitrary angle whose value we will have to determine. 
Writing the charged currents as SU(3) generators or in terms of fundamental quarks we build 
in AZ = 1 and AI = l/2 by using the I and V spin SU(3) generators. It is also fairly easy 
to see that we built in the AS = AQ rule and that the flavor changing neutral currents are 
cancelled by the existence of the charm quark. 

With these preliminaries out of the way let’s look at charged pion decay. The quark 
diagrams and helicity structure for quark decays are shown in Fig. B.5. The helicity structure 
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implied by V-A means that leptons are left-handed and anti-leptons are right-handed if they 
are relativistic: 

< L+.$i> = +p 

(B.10) 

* + ev 

A glance at Fig. B.5 shows that the xs do not decay into electrons even though they have 
the larger phase space because this decay is helicity unfavored. Phase space also enormously 
disfavors r+ -+ Ge+v. 

Fig. B.5.a: Quark diagram for T decay. 

Fig. B.5.b: Helicity in x decay. 
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Fig. B.5.c: Quark diagram for K decay. 

What about the x to p + Y decay? We attempt to scale the muon lifetime. Phase space 
scales as p*. The propagator dynamics gives you a mass to the 4th power. Assuming the d 
is merely a spectator and somehow annihilates with the d with unity probability, we scale 
as in Eq. B.ll: 

r** r = 2.5 x 10-l’ Gel’ 

1 1 
1 rlr - l-,[p;/(M,/2)] $ ,m= 300 MeV 

P 
(B.11) 

- 1.1 x 10-l’ GeV 

In fact, this rough attempt at scaling turns out to be reasonably successful for the absolute 

decay rate. We also saw that the branching fractions could be explained entirely by helicity 
arguments and a V-A weak interaction theory. 

Let’s now try to estimate decays for charged kaons. The quark diagrams for this are shown 
in Fig. B.S. The strange quark is heavy and that means that the kaon can decay to ~LV or 
quark anti-quark pairs. As with a charged pion, the electron is helicity disfavored. Ignoring 
the uti annihilation or continued propagation as a #, we expect and observe branching ratios 
as shown below: 

B(K =+ g-5) 
B(K- + T-T?‘) 

l/4 2 0.63 
= 314 0.21 
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These are certainly of the same order of magnitude but one obviously cannot claim any great 
success for the branching ratio argument. Remembering that the strange quark is Cabibbo 
mixed and unfavored for transition, we can estimate what the K leptonic rate is. For this 
we compare x and K decays as in Fig. B.5 and the equations below: 

gL z gw tan8, 

r(K --+ PV) 
rb + ~4 

(B.13) 

r** K = 3.4 x 10-l’ GeV 

8, - 0.14(0.41 if no -j factor) 

tanB,Ob‘ = 0.22 

Using the observed value of the leptonic width for the kaons we get an estimator (as we 
explain later) for the Cabibbo angle which is small. In fact, the exact result is within a factor 
of 2 of this estimate. This means that the favored transition is u -+ d whereas the unfavored 
transition, i.e., that with the sine, weight is u + s. Another estimate of the Cabibbo angle 
can be had by comparing the semi-leptonic decay widths for rr- + x”efi and K- + Ir”eij. 
Although it is sketched in Fig. B.5 we did not discuss it since it is a very rare decay due to 
the small q value. 

The neutral kaon system is rather more complicated but, of course, it is much richer. The 
K” and R” strong eigenstates are not going to be the weak eigenstates. They mix due to the 
weak interactions, into what are approximately CP eigenstates the KS and KL. The mixing 
is via two LS = 1 transitions. I am going to assume that we have a nodding acquaintance 
with the “classical” phenomena of kaon decay, CP violation, regeneration, and the like and 
concentrate on the box diagrams. They are more topical and are directly related to similar 
diagrams for b decays. 

In both these systems you have a neutral system with a strong quantum number. There is 
a flavor which is different for the particle and anti-particle. However, they can mix through 
two sequential weak interactions. The quark diagrams are given in Fig. B.6. A rough 
estimate of the KL decay width is given in Eq. B.14. Note that in three body semi-leptonic 
decays the helicity suppression of ev is not operative. We scale I, using Eq. B.ll, Fig. 
B.5.a., and Fig. B.6.a: 
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a) ro;: ZY 7.4 x lo-15 GeV 
roba = r,,/580 = 1.27 x lo-” Gel’ 

i? : 5% [(MK/~))/~:] (7)‘q 

L 2.6 x lo-r6 GeV , 

(B.14) 

b) B(KL -+ v”) 115 0.22 

B(KL -+ rev) = l/5 L 0.39 
B(KL + 3~) 315 0.34 . 

The factor 5 has to do with the fact that there are now five possible virtual W decays all 
with equal branching ratios and universal coupling. The mass to the 4th and Cabibbo angle 
factors are familiar from charged K decay. This estimate turns out to be fairly poor. The 
KL meson lifetime is about 600 times longer than the KS due to the fact that 2~ decays are 
not accessible to the KL if CP is a good quantum number. The relevant branching ratios 
are also given in Eq. B.14. We guess roughly l/5 for each semi-leptonic decay and 315 for 
the non-leptonic decay. The observed ratios are at best within the right order-of-magnitude. 
For KS, B(Ks + rr) - 1 which is inexplicable at our level of discussion. This non-leptonic 
enhancement is still poorly understood. 

K” 
U 

77+ 

d 
- 
d 

Fig. B.6.a: Quark diagram for k” decay. 
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Fig. B.6.b: Box diagram for K” - E” mixing. 

+s I “Bc +cose s -r ------ s --t--.L- 

K” z u/l----- tyLL- O +---R 
-“-“c 

-, a -s I ” ” c 

Fig. B.6.c: Suppression mechanism for K”l?O mixing and flavor changing neutral current. 

If we look at the box diagram for K” - R” mixing and compare it to the decay diagram, 
it is easy to convince oneself that the mixing is comparable to the decay width: 
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&w - g& sin’ e, 
A decay - g&sine, 

AM = MK~- MK~ “I’K, 

AMIrKs Z ZKs = 0.46 

(B.15) 

Since it is the weak interactions which cause the splitting of masses between the strong 
eigenstates, we expect the mass difference to be comparable to the KS decay width and, 
indeed it is. In fact, the box diagram without the charm quark gives too large a KL - KS 
mass splitting. As shown in Fig. B.6.c. it is the relative sign in the charged current (see 
Fig. B.4) between the up and the charm quark which causes a cancellation in the Kr, - KS 
mass difference. Clearly that cancellation fails to the extent that the up and the charmed 
quarks have different masses and hence that their propagators behave differently. 

Ah - g&ms(l - +y.)r(sinO.cos 0,)s 
- [G sin 8. cos O,m( 1 - rc)]” 

(B.16) 

In principle the K” - go box diagram ‘Lpredicts” the CP violating parameters in K decay. 
However, this is only true at the quark level. At the hadron level “chemistry” rears its ugly 
head. In any case, e’ has yet to be measured definitively. At Fermilab, E-731 is attempting 
such a measurement. 

Historically, when charm was predicted to kill flavor changing neutral currents there was 
an upper limit put on the charm mass such that one would have the observed KS - Kr. 
mass difference. If the charmed mass were too large then the GIM mechanism cancellation 
would be ruined by the difference in propagators and we would have too big a KS - KL 
mass difference. What is amazing is that the numerical prediction for the charm quark mass 
turned out to be very good. 

Now let’s look at charmed meson decays. What we will do is merely scale up the results 
for semi-leptonic and non-leptonic K decays. In this case, the Cabibbo favored transition is 
c-+s+w: 
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W- + e-ii. + /I-D,, + 3?Ld 
B D+-e+ ) 
B(rH+K) 

= l&L= 
315 - 0.64’ 

b) P(D+ + e+) = 2.6 X lo-l3 GeV L (yc)“r,+ = 7.8 X lo-l4 GeV 
m. = 1500 MeV, (B.17) 

4 rD+ 7.2 Cd 
rDo = 15 x lo-i3 GeV, cii 

rF+ 23 CX 

We expect the branching ratio into electrons to be l/5 and into hadrons (that means kaons 
plus some number of pions) to be 60%. For charged Ds these branching ratios are close to 
what is observed. As far as lifetime goes, we take the pion lifetime and scale by the quark 
mass to the 5th power. This result turns out to be within an order-of-magnitude which 
is an acceptable validation. Other charmed mesons, the Do and Ff have lifetimes which 
are comparable to the D+. There are details of factors of two and three. However, for the 
purposes of these rough “back of the envelope” estimates we can say that all of the lifetimes 
are the same and indicate the same underlying c -+ s + W transition. 

Moving up the generations we expect no surprises, just as in going from p to T. For b 
decays, the basic quark transition is b -P c + W. The other quark in the b meson is assumed 
to be just a spectator. For b decays, the scaling is very similar to that for c decays. In this 
case, we have a new Cabibbo allowed pair which is kinematically available, the zs pair, but 
otherwise, the arguments go the same as in Eq. B.17. 

a) W- + e-PC + p-c, + r-~~ + 3(tid + ES) 

b) rB - (z+D 
4.7 x lo-l3 Gel’ L 6.2 x lo-r0 GeV 

@b - 0.03 - e,l . 

(B.18) 

The branching ratios are 9 to 1 and the underlying quark transition is b -+ W + c. That 
certainly agrees with the observed branching ratios. However, when we do lifetime scaling we 
find a very large suppression. This means there is another angle for b decays; they are much 
longer lived than we expect. That angle is comparable to the square of the Cabibbo angle. 
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We don’t know why the suppression exists and mapping out the elements of the complete 
mixing of the strong eigenstates into the weak eigenstates is a project which will occupy us 
for some time. The mixing matrix has many of its elements as yet only poorly determined. 

So far we have discussed the non-leptonic and some of the leptonic decays of xs, KS, 
Ds, and Bs. What about the purely leptonic decays which we have already looked at for 
the rrs and KS? The underlying quark diagram for such decays is shown in Fig. B.7. For 
pions the annihilation of the quark and anti-quark into W is Cabibbo favored whereas for KS 
and Ds it is disfavored. In this case, there are strong interaction effects. We parameterize 
them as shown in Fig. B.7 with a phenomenological decay constant for the pseudoscalar. 
The leptonic piece is pointlike and we can treat it as such. The purely leptonic decay width 
is second order and goes like Gs. We take the Cabibbo factors into account and scale the 
phenomenological decay constant to the muon mass. The Mi factor is the helicity disfavored 
factor due to the V-A dynamics (see Eq. B.lO). Overall the width is proportional to the 
pseudoscalar mass but that is just phase space. Using pion decays, we can find the decay 
constant, which is 138 MeV. The result (see Eq. B.13) for K + @v is fK ? f*. Emboldened 
by these results we assume flavor symmetry. Then all the decay constants are the same. 
Then it is easy to see from Fig. B.7 that the b leptonic decay rate goes like the mass of the 
parent. 

P 
i. 
-, 9 

A - 2 <01 J,“lh>[i,~~ (I-~, ) u,] 

-2 fp vL( %J [&r, (l-7, HA,] 

r - [g fb(T$@& 

Fig. B.7: Quark diagram for pseudoscalar meson leptonic decays. 
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fw = 138 Mel’ N fx 

(B.19) 

r(D+ -+ IL++ v) MD 

r(K+ -+/A++ V) = MK 

This is basically just two-body phase space. Since the non-leptonic and semi-leptonic 
rates scale as the 5th power of the mass, we expect that heavier flavors will have much 
reduced purely leptonic branching ratios. In fact, for charged D mesons there is only a 2% 
leptonic branching ratio upper limit. Purely leptonic D decays have yet to be observed. 

Now a word about the neutral heavy flavored states. The strong eigenstates do not 
govern weak decay and are not the eigenstates of the weak decay. We have already seen how 
in the case of the neutral kaons the mass difference and decay width are comparable. The 
box diagram is such that we can make a statement about the charm-quark mass. There is a 
similar situation for Ds where in the box diagram connecting Do and B” we have intermediate 
states with the b quark. The mixing box diagram is proportional to the b quark analog of 
the Cabibbo angle squared. Similarly for b quarks themselves, the b and 6 box diagram has 
intermediate top-quark states with their own analagous Cabibbo angle. The same arguments 
relating decay diagram and box diagrams lead us to believe that all the neutral heavy flavor 
particles will have weak mass differences comparable to their decay amplitudes. That means 
there will be mixing between the strong eigenstates in all the systems. This mixing for the b 
system means that if CP violation is small (as it is for the kaon system) and if one begins with 
a strong eigenstate at time zero (in other words, prepared by the strong interactions), as time 
evolves this state will become a mixture of B and Es with the time evolution governed by the 
weak eigenstates. Assuming that the lifetimes for the weak eigenstates are very comparable, 
then the time evolution into charged leptons is shown below: 

IyB + e+) - e- [lt cos(AMt)] - l?(B -+ !-) 

r(B ---f !-) - eCrt [l- cos(AMt)] - I’(i? + e+) . 

BB -+ L’*L+ 

BB -+ Pi? 
= 2/(2 + 2) 

(B.20) 

At time zero we have a system decaying only into, say, positive leptons. As the system 
evolves with time we begin to get Bs decaying into negative leptons. This means that an 
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initial BB state integrated over all times will give us same sign di-leptons as shown in Eq. 
B.20. If one prepares BB pairs via the strong interactions and measures the like sign di- 
leptons, one can extract the mixing parameter. Recently there have been results from both 
UAl and Argus that tell us that the mixing parameter for Bs is substantial: 

AM 
- - O.O3(mJ40 Gel’)‘, z - 0.2 to 0.4 r 

mt 2 100 Get’ 

(B.21) 

Note that, the top quark is heavier than about 40 GeV. If it is heavier than Mw, then 
toponium spectroscopy will be wiped out by t + b + W decays. In that case, the rich 
spectroscopy of tf states will be killed by weak decays and the q~ potential shown in Fig. 
D.7 of Section I will be hard to observe. 

In fact, the mixing parameter is very comparable to that for the neutral kaon system. 
Since the box diagram is completely analagous to what we have discussed for the KS, the 
fact that the mixing is large tells us that the top quark mass is fairly heavy. In fact, it looks 
as if 2” gauge bosons cannot decay into top pairs, as we have assumed previously. 

Beyond mixing, there is also the possibility of observing CP violation in the B”fP system. 
Exactly as one does in the K”liTo system, one writes the weak eigenstates. They are not, 
just as the KS and KL are not, CP eigenstates: 

B1 
2 

- (l+e)B’f(l -e)g” (B.22) 

If the same final state is accessible to both B and B and is a CP eigenstate, then the decay 
rate for B and B into that final state is given below: 

r(B * f) - e-r’ [1 - sin(AMt)Zm (e) pf] 

I?@ -+ f) - e+” 1 + sin(AMt)lm 
(3 Pf! 

(B.23) 

Pf = A@ + f)/A(B + f) - 1 

(b -13 N zIm 1-e 
(b + w (4 1+e Pf 

These equations are very much like the equations for KS and KL decays into a common 
accessible final state of 2 pions. The asymmetry between B and B integrated over all times 
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is proportional to the mixing parameter and the CP violating parameter E. Recall that in 
the neutral-kaon system the CP violating parameter E is 2 x 10-s. So far this is the only 
example of CP violation that we have measured. 

Clearly the $K, system is accessible to both B” and B” as we see in Fig. B.8. Not 
only that but the transition elements are all Cabibbo favored. For reasons that are too 
complicated to go into here, using the Standard Model parameters one can estimate the size 
of E for Ds. It is expected to be one part in 1000, similar to that for KS. For Bs people 
expect it to be a few tenths. As we have seen, the mixing parameter is also at the level of 
a few tenths. This means that one expects for fairly rare decays such as $K, (which may 
have a branching ratio of one part in 10,000) that the CP asymmetry, as defined in Eq. 
B.23, will be quite large. It will be of order of a few percent. This is certainly an exciting 
possibility; examining CP violation in some system other than the neutral-kaon system. For 
kaons people have been working since 1964 and have extracted basically one number, E. 
There is another number in CP violation but after many years it is still not clear that this 
number is not 0. Hopefully, within the next couple of years experiments such as E-731 here 
at Fermilab can clear this up. For the B system the fixed-target program is only now gearing 
up to begin a series of exploratory measurements of B physics production, mixing, and CP 
violation. 
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Fig. B.8: B and B decay schemes leading to the same final state CP eigenstate $Ks. 
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So far we have said nothing about weak decays of baryons. We will not really say much 
in great detail about them because they are more complicated. We just want to draw the 
analogy with the decays of mesons. In studying the Dirac equation, one finds the solutions 
for particle and anti-particle in a particular representation. They are given below: 

u = +&+-] 

~‘7psvu. + gdx 
a’%,%gAu + gAX*‘g:x 

(B.24) 

Defining phenomenological couplings for the hadrons for vector and axial vector coupling, 
one can look at the non-relativistic limit which is applicable in baryon decays because the q 
value is rather low. For vector coupling only the time component is important, whereas for 
axial vector coupling the space components of -yrys are important. 

We have already mentioned that the weak current for AS = 0 transitions is proportional 
to the isotopic spin ladder operators IfI-, while the strangeness changing weak currents 
are proportional to the V+ and V- operators. Combining the SU(3) flavor operators with 
the Lorentz spin operators, we get the expression for the ratio of axial to vector coupling for 
AS = 0 and AS = 1 transitions given below: 

SAISV = 
< B’ll+qJB > 

< B’II+,IB > 
, AS=0 

(B.25) 

zz c B’IV+QIB > 

< B’IV+IB > 
, IA.71 = 1 

For pointlike leptons the coupling is V minus A so the ratio of axial to vector coupling is 
1. However, for the baryons we have strong interaction effects which can change this ratio. 
We can use SU(3) Clebsch-Gordan algebra to relate the matrix elements of transitions within 
a multiplet, because sll of those transitions are related by I spin, U spin, or V spin ladder 
operators. However, we see that it is only the vector current which is proportional to an 
SU(3) generator. Hence, it is only that coupling which has a conserved generator current. 
This is called the conserved vector current. For the axial decays, we have mixtures of both 
kinds of octets. The baryons have mixed symmetry. The axial vector generator, although it 
is proportional to V+ also has a Q piece, so it is not a pure SIJ(3) generator. This.means 
the axial current is not conserved. All in all, the weak decays for the baryon octet are rather 
complicated for both semi-leptonic and non-leptonic decays. Although we have sketched out 
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what one does, in practice it is a messy business. Fermilab has a long history of hyperon- 
decay measurements, the latest in that series is E-715 which was looking at the ,LJ decay of 
the E. 

Suffice it to say that in a spectator model, we expect the decay rates for semi-leptonic and 
non-leptonic decays of mesons and baryons to be rather similar. Representative spectator 
quark diagrams are shown in Fig. B.9. 

n I;- ------------------------ - 
=------------------------- P 
d > 

K” 

Fig. B.9: Spectator quark diagrams for semi-leptonic and non-leptonic weak decays 
comparing K and A decays; K+ + ?r’l+v vs x -+ @!+v 
and K” -+ R’XO vs ii -v fin’ 
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In Table B.l, we show a comparison of the meson and baryon semi-leptonic decays. From 
the quark diagram it is clear that the underlying mechanism is that s -+ u + W followed 
by W + eu. To the extent that this proceeds as a spectator diagram, we expect the decay 
widths to be comparable. They are certainly all of order a few times 10-i’ GeV which 
lends credence to this model. Similarly for the non-leptonic weak decays, Table B.2, the 
quark diagrams for spectators are again completely similar. In this case, the meson and 
baryon rates are comparable and they are all a few times lo-is GeV. There is a nonleptonic 
enhancement that one really doesn’t understand particularly well and that we have glossed 
over. However, for the purposes of comparison between the mesons and baryons it is clear 
that a spectator model where one quark decays inside a hadron and the other quarks act 
effectively as spectators works out rather well. 

Table B.l. 

Comparison of meson and baryon semi-leptonic decays. 

I’(GeV) 
Decay Mode x 10’8 

K+ -+ n’l+v 4.3 

KL -+ s+e-; 8.4 
A + pe-i; 2.5 
c- -+ d-i? 6.5 
E- + Lie-; 3.6 
n- + SOL-i; 0.9 

Table B.2. 

Comparison of meson and baryon non-leptonic decays. 

Decay Mode 
-+ *x 

Cf -+ nn- 
c- + n?r- 
20 -t A?rO 
z- + An- 

i-l- + AK- 

Dimensional analysis can be very useful in estimating rare decays. For example, at 
Brookhaven Lab, much attention is focussed on rare K decays. The lepton number violating 
decay Ki + pe, if mediated by a heavy particle of mass M.ZP with coupling g, would imply 
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;;;;-&‘~en; a~;!m; C$/W% If we assume g = gw then B(KL -+ pe) - 
. 

- lo-’ probes a mass MOP - 10 TeV. Clearly, very high 
mass scales are being probed in these experiments. 

The second order nature of the weak decays makes the neutron very long lived. At the 
quark level u + d Ed which is driven only by the Mp - M,, electromagnetic mass difference. 

We roughly expect a neutron with lifetime scaled up from rc by [M;‘( Mp - M,,)]’ = 3.6 x 

10s. This is an enormous factor, scaling l/r, = 2.2~ set to l/l?, = 7930 sec. The observed 
lifetime is 898 set which is close for 9 decades of extrapolation. Another example of a rare 
decay is proton decay, mediated by a super heavy particle M. at unification masses. At 
that mass, all coupling constants have run together to g2 - Q. The familiar propagator and 
phase space arguments yield I?r N (ga/M~)2M~ - (d/Mi)Mi. For M, - 10” GeV, rp - 
lo-*’ GeV. This rate is - 10’s times slower than IA. In fact that the heavy M, propagator 
factor slows down the rate, means that a sensitive measurement of l/I?, probes fantastically 
high mass scales which are inaccessible to brute force techniques. 

If we now look at the particle properties table we realize that we have worked our way 
through almost all of the particles which decay predominately by the weak interactions. We 
have come to a fairly successful explanation of the lifetimes, the decay modes, and branching 
ratios based on very simple minded arguments. 
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C. Electromagnetic Decays 

cles 
Let us now begin to look at the electromagnetic decays of hadrons. The lightest parti- 
which decay electromagnetically with significant branching fractions are the # and 7, 

decaying into two photons. The observed decay rates are given below: 

I’(+’ --) 77) = 7.6 eV 

cc.11 

r($ + -r/l = 0.41 Icev 

First look at the # decay with a crude model; see Fig. C.1.a. We will treat the quark 
anti-quark system as we did in positronium and estimate the decay rate that way. Taking a 
binding radius for the quark anti-quark system compatible with the numbers we got in the 
first Section we can estimate the wave function at the origin. Thus, we get an estimate for 
pion decay rate which is unfortunately 200 kilovolts. This is a large discrepancy and, in fact, 
it is too large even for an “abacus” estimate: 

q’s0 -+ 7-f) = 
4d 
~l*(ov 

- 0.8 fm 
- (l/O.8 fm)3 - 0.016 Gel” 

q’s0 -+ 77) - 200 lcev 

(C-2) 

Why is this not working out particularly well? We know there are strong interactions 
and so we know there are multiple gluon effects which are important. In particular, the pion 
is as we know, anomalously light. That might mean that the mass scale is smaller, and that 
the coupling constants are larger. 
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Fig. C.1.a: Quark diagram for no decay. 

Fig. C.1.b: Strong interaction corrections for x0 decay. 
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Fig. C.1.c: Relation of x leptonic decay to nucleon p decay. 

These considerations lead us to believe that we are going to have to face up to strong interac- 
tion effects. We are going to have to do “chemistry” at some level in order to understand the 
system. The first attempt at estimating the strong interaction effects is seen in Fig. C.1.b. 
We insert a phenomenological pseudoscalar coupling of the pion to the nucleon anti-nucleon 
system and work out the decay rate. Note that this phenomenological coupling constant is 
large, g$vN/4x m 15. This means we are indeed in a nonperturbative regime: 

M,” g&9 - 15 
M;' 4~ CC.31 

Now we have an expression for the no + 7-y transition rate in terms of the pion nucleon 
coupling constant. We would like to relate that to some other process we have already seen. 
The diagram for this relationship is shown in Fig. C.1.c. We use the definition that we made 
in Section B for a pion decay constant which ARM appropriate to the leptonic decay of the 
pion. Diagrammatically, we have a relationship between nucleon p decay and pion leptonic 
decay. If we assume that the nudeon fl decay axial coupling is dominated by the pion pole, 
we derive the relationship seen in Eq. (2.4: 
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r(r --+ jw), fr = 138 Mel’ 

AB(N -+ N’Lv) - 
(z) (q?Mjj f* 

= 9A (C-4) 

1.18 z 1.42 

Since the momentum transfer scale for /3 decay is low, we can make an approximation to 
the propagator. Therefore, we have a relationship between the axial-vector coupling constant 
and the pion-nucleon coupling constant. This relationship is fairly well obeyed. It is called 
the Goldberger-Trieman relation. Notice that as we discussed in Section B, the axial-vector 
coupling is not strictly 1 as it is for leptons because of strong interaction effects between the 
quarks. Using this relationship we can express the pion-electromagnetic decay in terms of 
electromagnetic-coupling constant, the axial weak decay constant, the pion decay constant, 
and the relevant mass scales. The result does not refer to nucleons. In fact, we can replace 
them by quarks. Assuming a color factor of three summation we get an estimate for the 
width of 14 electron volts which is quite close to the observed value: 

r-(2 +r7) = { ‘<;;:a2 [+=)]‘)M. 

= 14 ev 

e, E Qe 
cc.51 

Of course, the axial-coupling constant and the pion-decay constant are merely param- 
eterizations of our ignorance of the strong interactions. This means what we have done is 
relate different classes of ignorance in some successful fashion. An a priori calculation from 
first principles will have to wait for a real lattice engine. We defer discussion of n -t 77, 
Eq. C.1, until later. For decay modes discussed in the rest of this Section, the branching 
fractions are small. 

Let us now turn to the consideration of vector-meson decays into lepton pairs. A tabu- 
lation of the data is given in Table C.l and the relevant quark diagram for this process is 
shown in Fig. C.2. 
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Table C.l. 
Vector meson decays into e+e-. 

1 Meson 

P 

w 

4 

lil 

$’ 

-r 

I’(keV) 

6.5 f0.8 

J$(o)(“(GeV3) x 1O-2 

0.76 & 0.17 

0.29 

---I 0.31 

1.34 f 0.08 0.47 

4.8 f 0.06 3.9 

2.1 i 0.3 

1.2 

2.4 

40.6 

A rough estimate is given below: 

r(p -+ ee) N_ 7 keV z Q’/$(O)\‘/M~ 

t !;Q:] M, = 1.1 keV . 

Q, 

(‘3) 

The width is proportional to uf, the wave function at the origin, and the mass of the system. 
Making a simple assumption of strong binding and taking the strong coupling to be l/3 we 
get au estimate of 1.1 kilovolt which is certainly in the same order-of-magnitude as of the 
observed widths. 

107 



Fig. C.2: Quark diagram for vector-meson decays into lepton pairs. 

Note that the a*/Mr factor is the same as we saw for the total cross-section for lepton 
pairs. It is basicaIIy the propagator of the virtual photon which, when we were discussing 
cross-section went like $; in this case s is M;. The other modification is that what one 
needs to change a cross section to a reaction rate is the flux which is the wave function at 
the origin*. In order to evaluate these rates we need the average value of the squared charge 
of the vector-mesons. We can get that for the vector meson octet using the wave functions 
we derived in Section I under the assumption of magic mixing. These charges are worked 
out in Eq. C.7: 

qv + L+L-) = 167& < Q' > !?$f 

iAcr+i$ p= -&kza) 

<Q*+(+ w+n+@ 

l2 

I I 3 ’ 
‘$= si 

2’ 

I I 3 ’ 
* = ci? 

1’ 

I I 3 ’ 
I- = b6 

(C.7) 
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The results are fairly straight forward to derive. For example, we expect the p to #J width 
to be 9 to 1, and we observe a factor of about 5.3. There is more that we can do with this 
data to give us a confirmation of the underlying dynamics. We can extract the wave function 
of the origin instead of just the ratios and plot those as a function of the quark anti-quark 
system mass. We find that the wave function at the origin squared scales very closely as the 
square of the mass. If you recall, we showed in the first Section that one gluonic exchange 
gives us a mass cubed scaling, while a confining string potential gave a linear scaling with 
mass. This is additional evidence for a combination of Coulomb potential from one gIuon 
exchange plus a confining potential: 

IvW)l’ - M’ 
M3 for OGE, M for string . (C-8) 

Finally, for heavy quark anti-quark systems one can combine hadronic and electromag- 
netic decay widths to extract the strong coupling constant. Recall that the $ cannot decay 
into two gluons. It decays into three gluons and we transcribed the positronium formula in 
the first Section. The total + decay rate is proportional to the wave function at the origin 
squared. We have just derived the fact that the dilepton decay rate of the 4 is also propor- 
tional to the wave function at the origin. The ratio is then independent of the mass of the 
state and the wave function at the origin; we have removed the internal dynamics and only 
the ratio of the coupling constants is left: 

w - 999) = 
~3l~(fJ)l’ M1 [ 4;;- “I] 

ry+ + ee) = 16aa’ < Q >' I$(O)l'/M' 

I?($ + Hadrons) 

r(+ -+ -1 
= 13.4, a. = 0.19 

r(% --) 99) = 164 1+(O)l’ /M2 

= 7MeVi11+4MeV 

(C.9) 

Given n, and the wave function at the origin from the dilepton rate we can predict the 
11. rate which is about the n. total width into two gluons. It turns out to be about 7 MeV. 
The data for the total width is not yet good enough to really confront this prediction but 
there is a Iimit which is compatible with this prediction. For amusement one can perform the 
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same sort of operations for the 4 meson. In this case, the ratio of hadron decays to lepton 
decays is much larger. That tells us that Q, is larger. If one takes it literally, it looks as if 
Q. is increasing as the mass scale decreases which is just what one expects for asymptotic 
freedom: 

r(d -+ KW 
r(4 + eel 

= 3221, a, = 0.47 (C.10) 

In Section I, we derived the relationship between spin-spin mass splitting and the wave 
function at the origin. In this case we take the charm quark mass to be 1.5 GeV which is just 
about half of the $ mass. This is an assumption that the system is quite non-relativistic. 
We can eliminate the wave function at the origin by using the dilepton decay rate. We 
then have a relationship between the spin-spin mass splitting coupling constants, and the 
observed dilepton rate. We get a consistent value for cr. of 0.2 again. The upshot of all of 
these manipulations is that the dilepton decay rate for vector mesons validates the dynamics 
that we did in the first Section for quark anti-quark bound systems. We obtain the same 
wave function at the origin and the same coupling constant: 

M,,-M,, = 115MeVrrM” 
4 

32*a. = ,;;;rlwla = 
M$a,r(+ + ee) 

c 2m=a= c 
(C.11) 

= [;alJ;>I]r(?+e.) 

Q, = 0.2 

Let’s turn our attention now to the decays of vector mesons to pseudoscalar mesons 
plus photons. The spin diagrams for that and the related decay of pseudoscalar into two 
photons are shown in Fig. C.3. Also shown in that figure is the diagram for the experimental 
method of measuring such decay rates. In this case, one produces the vector meson in the 
Coulomb field of the nucleus. The virtual proton target in a heavy 2 nucleus is scattered 
by the incident pseudoscalar meson producing a vector meson. This cross-section can be 
substantial because although one is down by a factor of OL there are Z protons and using a 
heavy nucleus Zu can be close to 1. The virtual photon also constrains the process to be very 
forward, so all of the cross-section is in a very small region of phase space. Fermilab has a 
history of doing such experiments, starting out with E-272 and continuing in the fixed-target 
program. 
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Fig. C.3.a: Spin orientations for V -t Py. 

Fig. C.3.b: Spin orientations for P -+ yy. 
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. 

Fig. C.3.c: Prime&off diagram for V production in the Coulomb field of a nucleus. 

We can start off with a very rough estimator for the decay rate. This is a magnetic 
dipole transition so you know that in the long wavelength approximation of classical Alec- 
tromagnetism that the width goes like the q value cubed. Again, looking at coupling, it 
is proportional to o so the decay rate is as shown below. We can get within an order of 
magnitude of the observed rate in this fashion: 

v -i Py 
r(M1) - Q [(Mv - MP)IMV13 a 

IQ -+ KY) - 600 keV 
z 70 keV 

(C.12) 

We have an interaction energy between the electric field of the photon and the electric 
dipole moment. We assume the usual relationship between the moment and the spin. The 
final state photon is decomposed into spin directions Ja of +l, -1, and zero. The polarization 
vector, Z, is as shown in Eq. C.13: 
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A = <P\ji.+‘> 

/i = &Qr? 

. V(Jz = l),E’ = (l,a,o) (-5) 

(C.13) 

L7.c: zz -&(u= t EUy) = v%+ 

This means that the amplitude is proportional to the spin-tip (or spin-ladder) operators. 
That is not surprising when you look at Fig. C.3 because what you are doing is taking one 
of the spins in the vector meson, Sipping it to make a pseudoscalar meson, and giving off a 
photon in order to conserve spin. Defining the magnetic moment /.L in Eq. C.14 and working 
out the operators of the up ladder we get the amplitude shown below: 

A+ = ~~<P(Qr+/V>, /G-M 
t 2m 

= PI< PIQ$’ > - < PIQJV >] . (C.14) 

< XslugxA > = - < XSlL+XA >= -’ 
45 

The amplitude is simply proportional to the magnetic moment for quark and anti-quark 
sandwiched between the vector and pseudoscalar states. In order to work out the algebra 
for the spin ladder operators one needs the symmetric and anti-symmetric wave functions 
which we have already given in the first Section when working out the spectroscopy of the 
pseudoscalar snd vector octet. Let’s go through the calculation in some detail for w + rry 
decay. The wave functions and charges are: 

w = (uiit &i/d3 

T = (-wi+dq/h 

<wlQ~llr> = [-(t$ t (-g/2 . 

I, 
<wlQ&r > = [-(-;I + (+;,I /2 

A +=P 

(C.15) 
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Evaluating the charge of the first parton (quark) and the second parton (anti-quark) sand- 
wiched between the w and K states we get the result that the transition amplitude for the 
w in a spin up state is just equal to the magnetic moment. Similarly, the amplitude for 
the w with spin minus 1 in the z direction is equal to /I. The amplitude for a vector meson 
in a spin zero state along the z axis is 0 because you cannot get a transverse photon by 
spin-angular momentum conservation. Summing over the final states and averaging over the 
initial polarization states we get the result shown below: 

A- = A+,A,, = 0 

C, IA(w-+ rr)l’ = f~’ 
(C.16) 

Let’s look at a few other vector mesons. The 4 is very simple because in the magic 
mixing scheme it is a pure sa state. Since the photon conserves flavor the amplitude is 0. 
Experimentally the rate for q5 -+ ay is rather small: 

A(c$--t ry) z 0 
(C.17) 

l?+-+ Ry) N 0 ,,O,j 
qw --+ Tr) . 

This experimental ratio supports the idea of magic mixing which we have already come to 
by considerations of the OZI rule. Finally what about the p decay? The spin considerations 
are the same as for w t ~7. The only difference is in the expectation value of the quark 
and anti-quark charges. They are shown below: 

p = (--Uii+d~/h 

< PIQ& > = [t(i) + (-;)I /2 

< PIQzI* > = [+(-;) t ($1 /2 

(C.18) 

r(P + XY) 1 
= - 

rb --) *Y) 9 
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The ratio is of p -+ ~7 to w -+ ~7 is expected to be l/9. 

A compilation of the data for these electromagnetic decays is given in Table (3.2. We can 
see that indeed the w width is about 9 times larger than the p width. Note that the sign of 
the terms of the wave function is quite important because this is exactly the inverse of the 
behavior we saw for dilepton decays where the p had a 9 times higher width than the w. 

Table C.2. 
D 

P + 7-f 

w -+ 77 

4 -+ 97 

7’ -+ w7 

7’ + P7 

K’+ --) K+7 

K’O + Kay 

ay Rate 
I’(keV) 

890 

70 

5.5 

50 

3 

62 

7.6 

83 

60 

75 

!S f 

1 

1 

‘or v * Py. 
AIP 

1 

1 
3 

0 

-&(cosB~ + JZsinBo) 

&(cosBo + &sin&) 

&(--&coseo + sin&: 

&(v?Zcos& -sin&) 

A( &icos B. - sin 0s) 

$( 1 t l/7) 

g-2 + l/7) 

I 

y c ms/mu - 1.5 

The situation for vector mesons containing strange quarks is very similar to what we 
have already done. The magnetic moment of the strange quark is down by a factor of 7 on 
the average from that of the up and down quarks because it is heavier. Hence the charge 
is weighted by the 7 factor in the expression for the decay amplitude. We work out the 
amplitude for K”’ and K*+ in Eq. C.19: 
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/Jr = &QS = &Q” = ;QZ 
, 

A, = P[< PIQI/~IIV > - < ~IQhP’>l 
Ii-& = da (C.19) 

A + 

K’+ = ua 

A, = ,.L [; - (+)] = 7 [-2 + ;] 

Mixing result for the pseudoscalar mesons can be found using definitions from Section I. The 
resulting fit to $0 confirms the value found previously. 

Data given in the Table C.l allow us to extract 7 which turns out to be about S/3. This 
is close to the value of about 312 that we got from spectroscopy. The agreement helps us 
believe the picture of these kinds of decays; a single quark making a transition within the 
meson is a reasonable approximation to the reality of the situation. The logical extrapolation 
of this behavior occurs in the charm-vector mesons. We have already noted that the heavier 
quarks have a less mobile spin in that the magnetic moment is reduced. That means that in 
the limit of very heavy quarks only the light quark flips its spin. The charm quark is inert; 
it just sits there. The relevant factor in the decay width is just the square charge of the light 
quark: 

r(D*‘(cii) .-+ D’7) 
7 * M7 r(D*+(cq -t D+7) = 4 ’ (C.20) 

In the limit where 7 becomes very large we have the ratio of D*’ to D*+ at 4 which is just 
the square ratio of the light quark charges. We get the same result for the kaon system (see 
Table C.1) if 7 becomes large. Unfortunately, since there doesn’t exist a good experimental 
measure of the widths of the charged and neutral Des, we cannot confront this prediction 
with experimental data. 

A word about units. This is a magnetic dipole transition. The scales are Q times the 
squared charge of the quarks. We have to sum over the final states so we have a (2Jf + 1) 
factor. Electromagnetic dipole transitions have a q3 scaling, and we need a l/M’ to bring 
the dimensions out properly. The rate then is proportional to the magnetic moment squared 
times the q value to the third power: 
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(C.21) 

r(M1) = ; < Q >' a(2Jt + 1); - p2(2.Jf + l)k3 

k = Mv-Mp 

Q = $I, = Mti,/2 = 1550 MeV 

k = M+ - M,,. = 116 Met’ 

r(+ -+ 7~) = 0.71 keV A 0.80 keV 

For the $ decay into ~7 we know the charge of the charm quark. We take the mass to be 
half of the $ mass for non-relativistic binding. This gives us a q value of 116 MeV. One can 
make a sharp prediction that the radiative decay width down to the Q is 0.7 keV. That is 
very close to the observed value for this transition. 

What about the baryon radiative decays? One can measure them directly in hyperon 
beams or using the Primakoff effect with nucleon beams. A collection of some of the radiative 
decays is given in Table C.3 with a comparison to typical meson radiative decays. They are 
certainly of a comparable scale. Just as in the case with weak semi-leptonic decays and 
non-leptonic decays, we take this as evidence that the underlying dynamics is a single quark 
transition with some spectator quarks lurking around and not doing too much to effect 
things. 

Table C.3. 
Comparison of Meson and Baryon Radiative Decays 

Decav Mode 
w + 7r-y 

P ---t “7 
1(1232) + N7 

1(1620) + N7 

N(1440) + py 

N(1520) + py 

h(1520) + A-/ 

c -+ 127 

117 

r(keV) 
850 
70 

690 

42 

190 

600 

125 
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Of course there are still many radiative transitions which have not been measured and there 
is a long standing program of hyperon beam physics at Fermilab to make such measurements. 
For example, E-761 is the current experiment in a long line. We expect further increases in 
our knowledge of radiative baryon decays from E-761. 

There are a related set of decays for which we can take over the formalism we have 
developed above fairly easily. These are the decays of pseudoscalars into two photons. Recall 
that the photon is a U spin singlet. It is easy to remember that it is the flavorless quark 
anti-quark combination weighted by the charge of the quark as shown below: 

7 = J ;(+ - ;dJ - +) 

(C.22) 
A+ = IL[< PIQ1l7 > - < J’lQzl7 >I 

What one does is use the amplitude for vector meson into pseudoscalar plus photon and 
merely insert the photon as the vector. Starting from Eq. C.19, substitute the wave functions 
to get the amplitude for # -+ 77. This amplitude is again proportional to the quark 
magnetic moment as it should be. In exactly the same way, we can use the singlet and octet 
wave functions to derive the transition amplitudes for a singlet or octet into two photons. 
Recalling that the physical q is a mixture of the SU(3) sin e and octet we get the expression gl t 
for the relative amplitudes for the 7 and the x as shown in Eq. C.23: 

4~ * 77) 
4~ --+ 77) 

= $(cos& + ZJZsinBo) 

(C.23) 

We can use the data quoted in Eq. C.l to solve for the pseudoscalar mixing angle. 
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We find an angle of 15” from this ratio. Within errors and approximations this is in good 
agreement with the 24’ angle we got from the pseudoscalar nonet mixing. This is a reasonable 
confirmation of the mixing value that we got from an entirely different viewpoint, looking 
at the systematics of the mass relations in the pseudoscalar nonet. 

Let’s turn now to the consideration of baryon magnetic moments. Normally, one thinks 
of this as a static property of the baryons. However, it does represent the interaction of a 
quark in the baryon with a magnetic field, i.e., photons. Therefore, we might expect that it 
is related to the electromagnetic transitions we have just been discussing. Indeed, they have 
all had amplitudes which are directly proportional to the quark-magnetic moment. The first 
thing we need is the SU(6) wave function for the baryons. In the first Section we found the 
spin wave functions for the proton. We did this by looking at the coupling of 2 spin i to 
form spin 0 and spin 1. Then we recoupled to a third quark to give us spin i and spin f: 

3@2 = 2$4,1@2=2 
(uu) @d 

Pfi = ~(2tL$1uLdd--u~~Udrr--UUZLndn) . 
Nfi = ~(2dndhuu-dnduzLn-dud~~~) 

(C.24) 

If (uu) are symmetric there is still an overall anti-symmetry. When color is taken into account 
the flavor-spin is symmetric. The (uu) are in a spin one state and when recoupled to the d 
quark go to a spin i state. If the (uu) are anti-symmetric, they are in a spin 0 state, and 
recouple to the d quark to get a total spin f state. These wave functions were quoted in Fig. 
C.3 of Section I already. The linear sum of the symmetric and anti-symmetric octets gives 
us the wave functions shown in Eq. C.24. The equation for the neutron comes from isotopic 
spin symmetry, where one merely exchanges all u with d and vice-versa. 

For the magnetic moment we assume that only a single quark at a time interacts. We 
will make the impulse approximation and sum over all the quarks in the hadron as in Eq. 
C.25: 

Ph = c i h,SZk&/7,lh,SZ > 

= k& < h, SzlQ*$?/r*lh, sz > 

PLP = ~[4(3+~+~)+(~-~-5)+(-~+~-3] 

i&l = ~[4(-5-~-~)+(-5+~+~)+(~-~+~)] 

(C.25) 

PP = /w-g 
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We have assumed that the quarks are pointlike Dirac fermions with a g factor of 2. The 
explicit result for the proton and the neutron are given in Eq. C.25. It is merely a matter 
of keeping track of the charge and the spin direction for the u and the d quarks. The result 
is the famous relationship that the ratio of the proton to neutron-magnetic moments is -i 
which is in very good agreement with the experimental result. 

Years ago this was considered a great triumph for SU(6). In addition, there is the absolute 
value of 2.79 nuclear magnetons for the proton-magnetic moment. If we equate that to the 
quark-magnetic moment, we get a constituent quark mass of 340 MeV. This is in good 
agreement with what we found from baryon spectroscopy: 

lIPI& 3 = 
-2 

+ 7 - -2.79 = 
1.91 

-1.46 

P p = 2.791el/2Mp = le)/2m . 

m = 340 MeV 
(C.26) 

One can continue through the baryon octet and decuplet to find magnetic moments for 
baryons containing strange quarks. For the A, which is a strange iso-singlet, the u and d 
must be in an isotopic singlet state. Therefore, since they are I = 0 they don’t contribute to 
the magnetic moment. This means that the only contributor is the strange quark. We obtain 
the prediction that the A magnetic moment is just the strange quark magnetic moment. It 
is the magnetic moment p reduced by 7 times the charge of the strange quark: 

A = (ud)a 

(ud), I = 0 

n- = 93s 

7 = 1.52 

(C.27) 

The measured value shown in Table C.4 gives us another estimator of 7, which is 7 = 1.52. 
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Table C.4. 
Magne, tic momen 

Baryon 

P 

n 

A 

c+ 

r 

gJ 

z- 

n- 

Its of octe 

llh 
2.79 

-1.9 

-0.61 

2.33 

-1.41 

-1.25 

-0.69 

E-756? 

tnd decuple 

3U(% Ph/l’ 
1 

-4 

1 
-F 

$ [$ + $1 

$ [-1 + $1 

-$ [g - -$] 

$ [l - $1 

1 
-5 

t baryons. 

This is at least in rough agreement with what we got from spectroscopic considerations. 
Finally, there is a prediction for the R which consists of three strange quarks in an entirely 
symmetric state. The prediction is just that that is the strange quark magnetic moment 
times three. It is interesting to note that there has been a long tradition of magnetic moment 
measurements at Fermilab. The latest in that series is E-756 whose goal has been to measure 
the R magnetic moment precisely enough to make incisive discrimination between various 
models which are more detailed and which make more strict predictions about the magnetic 
moments of the hyperons. 

If one looks at the particle property tables in the blue book it is clear that we have 
now considered essentially all of the electromagnetic decays of both the mesons and the 
baryons and some of the static electromagnetic properties such as the magnetic moments 
of the hyperons. Everything we have done has served to confirm the picture of hadrons as 
systems of quarks with constituent masses that can be found from spectroscopy and whose 
decays can be understood using coupling constants and single quark dynamics to give us the 
observed decay rates. 
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D. Strong Hadronic Decays 

We now come to the consideration of strong decays of the hadrons. This will be a short 
section because this task is roughly equivalent to that of trying to understand atomic physics 
from a study of the residual & der Waals forces between molecules. As such, the study 
is not going to yield any particularly fruitful insights into the dynamics of the quarks and 
the gluons inside our hadron molecules. Of neccesity this will be a very brief and superllcial 
discussion. 

First let’s just remind ourselves of G parity. G parity is like C parity for photons in that 
for a system of n pions the G parity is (-l)“, just the way the C parity for a system of n 
photons is (-1)“. The same situation in C obtains for gtuons as for photons. In the first 
section, we did mention already the OZI rule which tells us that 4 mesons can decay into a 
K+K- pair via two gluon coupling but that the 3~ pair in the 4 can annihilate (since it is 
a C = 1 state) only into three or more gluons. That leads us to expect that the amplitude 
into two bodies is down by a factor of a. for px with respect to KK after one has taken out 
the phase space factors. The phase space factor is just the velocity of the final state in the 
center-of-mass as we derived in Section A of the second Section: 

l-(4 -+ KK) 0.84 IAK,#P& 
r(f#J-+pn) = iTi- IA,12PA 

P.1) 
IAKKI - - 4.6 - (a,)-’ 
l&l 

We estimate the strong coupling constant to be of order 0.2. 

Another manifestation of the OZI rule is something we have already quoted. The $J goes 
into 3 gluons and has a total width of 63 kilovolts while the Q can go to 2 gluons and has 
a width of order 10 MeV. The ratio of those two widths taken over from the positronium 
formula also gives us a strong coupling constant of order 0.2: 

3, 63 keV - a,4(d - 9) 
r ‘Ir 10 MeV 97T 

- 0.2 02) 

- 200 MeV 

For comparison, without such a suppression, the typical hadronic width of say the h(2030) 
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is about 200 MeV. Note that the Dij is not available to the $ because it is below threshold, 
whereas the ICI? is available to the 4 although it is only slightly above threshold. 

Let’s look at vector meson decays and try to get some feeling for the widths and the 
systematics. The spin diagrams for vector goes to pseudoscalar plus pion is shown in Fig. 
D.1. 

a) V+ PT decays. 

b) ;+ + 5’~ decays. 

Fig. D.l: Spin diagram for 
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This is supposed to be the analog of the electromagnetic decay vector goes to pseu- 
doscalar plus photon. In fact, the typical width of 100 MeV is something like the typical 
electromagnetic decay width of 1 MeV scaled up by the ratio of the coupling constants which 
in this case is cz (assuming cx. - 1): 

v + (Pn)m 
r - 100 MeV N J?(V 4 P-/)/a . CD.31 

In this case, the colorless x is the “residual&t der Waals” force carrier at long range made 
up of composites of color forces. Table D.l gives the results for p decay and K* decay into 
Kr. The w has to go to 3x because it has G parity of -1 whereas the p has the G parity 
of $1. The widths are all of order 100 MeV. One can always get a rough estimate of what 
kinds of decay8 will happen by drawing quark diagrams. For example, for K’ + XT, the 
quark diagram is shown in Table D.l. In this caee, one is boiling quark anti-quark pairs out 
of the vacuum. The gluons which are the agents of the coupling are traditionally not shown 
in such diagrams. 

Table D.l. 
V + Pr Widths 

S K- 

K 
*0 

ii e ” 
II+ 

What about P wave states? The P state8 are 1 ++, 2++, for example, which we have 
already looked at when discussing spin-orbit coupling in spectroscopy in the first Section. 
One might expect these P wave states to decay down to S state8 by spitting out a pion in a 
cascade mechanism. In fact, as seen in Table D.2 there is some evidence that the 2++ and 
l++ decay down to vector meson + pion, which in turn decays to pseudoscalar + another 
pion. There are no particularly obvious systematics to the branching ratio and decay widths. 
Again the branching ratios to cascade are reasonably large and all the decay widths are at 
the 100 MeV level, which is typical for hadronic decay. 
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Table D-2. 
(L = 1) + (L = 0) + ir widths. 

PC Mode BR J?(MeV) 
2++ f + 7rx 0.84 176 

Aa + px 0.70 110 
(“Pa) f’ + KI? ? 70 

K’ --+ K*x 0.24 100 

AI + psr 1.0 316 

l++ D -+ Tpr 0.49 25 

(“PI) Q --t K*n 0.94 184 

2s + 1P, + 3Sl+T 
3SLl+X 

For the decuplet baryons there is a tendency to proceed in an analogous fashion s+ -+ 

a’ x, as seen in Fig. D.l. For example, as seen in Table D.3, A + N + R, C* -+ A ; i and 
2* ~ = - + x. These decays all occur with branching ratios near 1 and with widths in order 
100 MeV. A typical quark diagram for decuplet goes to octet plus x is shown in Table D.3. 
Again, one boils quark anti-quark pairs out of the vacuum and combines them in all ways 
to get the final states. 

Table D.3. 
;+ + 4+x widths. 

2 2+ -+ 4’ Mode BR I’(MeV) 

A+Na 1.0 110 

xi’ -+ An 0.88 36 

s* -+ Zn 1.0 148 

10-+8+x 

” 
A” ” c?’ 

” P 
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Finally, for P wave baryons one has the quantum numbers shown below: 

L=l I- 3- s- 
3 TT 75 
N,A,E,Z,A ’ P.4) 

Within those quantum number multiplets there are different flavor catagories. Nucleon, 
(I= i), A, (I = i), E, A and 2. 

Table D.4. 

(L = 1) --+ (L = 0) + p widths 
(L=O)+V * 

Typical Mode 

‘I: 
N( 1520)+ N?r 

NT 
AK 
AT 

I CK 1 

NK 1 

Typical I 

NV) 
120 

200 

200 

20 

200 

1 
-- 

There is some tendency for the octets and decuplets in the higher angular momentum 
state to decay into $’ octets plus vector or pseudoscaiar mesons. The SU(3) factors for that 
are in 8 @ 8 then which contains both the octet and decuplet in higher angular momentum 
states: 
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(610)~ -+ St+ + V 

St+ +P P-5) 
8@8=1 63 8@8$10$27 

Typical kinds of decay modes are taken from the table of particle properties. The widths 
are of order 200 MeV and there is no particular systematic8 to the decay modes beyond this. 
The quark diagram8 which were used to categorize the decays are also useful for examining 
various dynamical questions. An example of this is shown in Fig. D.2 where a K* to K"n 
decay is shown. Also shown is the scattering x + p -+ K + Z via the annihilation into an s 
channel A. These quark diagrams are useful mnemonics and can be used to give an idea of 
decay branching ratios of new heavy flavors. 

Fig. D.2: Quark diagrams for decays and 2 body scattering. 

This seems a good place to stop because our Van der Waals chemistry is threatening to 
become organic chemistry. It is leading us rather far afield from our attempt to understand 
the molecular physics of hadrons using the atomic physics of quarks. 
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Summary 

What we have attempted to do is to provide a simple but superficial framework for 
any particular particle. Thus, without undue reference to the blue book, one can put it 
into a SU(3) category. Therefore, we can understand it’s quark content, and it’s quantum 
numbers by putting it into an octet or a decuplet or a singlet. The mass can be understood 
knowing its strange quark content since the constituent masses and the spin-spin splitting 
depend on strangeness. For higher excitations, the spin-orbit splitting has been estimated. 
In this way, you can make a very quick estimate of the mass of this hadron. We found 
the coupling constants; the weak coupling 4 fermion dynamics, or the electromagnetic or 
hadronic dynamics. Knowing the mass and coupling, one should be able to make a good 
estimate of the decay width. By drawing particular sets of diagrams one should also be able 
to get a plausible idea of the relevant branching ratio8 into different final states. With these 
preliminaries, after a moments thought in order to orient oneself, one can go look in the blue 
book without any hesitation that the answers that one finds are explicable in an intuitive 
way. By intuition in this case we just mean internalized repetitive experiences. 

The hope is that now there are no major mysteries to be found in the particle properties 
blue book. We presume that our trip to the zoo has been a pleasant and rewarding excursion. 
We now understand the kingdom / phylum / order / family / genus / species classification 
of the hadrons that we have met at the zoo. 

128 



Reference8 

1. Phys. Lett. 170B, April 1986, “Review of Partide Properties” and Particle Properties 
Data Booklet, Particle Data Group. 

2. C. Quigg, “Models for Hadrons,” FNAL CONF-81/78-THY, Nov. 1981. 

3. F. E. Close, “An Introduction to Quarks and Leptons,” Academic Press (1979). 

4. I.S. Hughes, “Elementary Partides,” Cambridge University Press (1985). 

5. K. Gottfried, “Concepts in Particle Physics,” Clarendon Press (1986). 

6. LB. Okun, “Partide Physics, The Quest for the Substance of Substance,” Harwood 
(1984). 

7. F. Haizen and A. Martin, “Q uar k s and Leptons: An Introductory Course in Modern 
Partide Physics,” Wiley (1984). 

8. D. Perkins, “Introduction to High Energy Physics,” Addison Wesley (1982). 

129 


